Chapter 5 the APPLICATION of the Z TRANSFORM 5.5.4 Aliasing

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 5 the APPLICATION of the Z TRANSFORM 5.5.4 Aliasing Chapter 5 THE APPLICATION OF THE Z TRANSFORM 5.5.4 Aliasing Copyright c 2005 Andreas Antoniou Victoria, BC, Canada Email: [email protected] July 14, 2018 Frame # 1 Slide # 1 A. Antoniou Digital Signal Processing { Sec. 5.5.4 Aliasing is objectionable in practice and it must be prevented from occurring. This presentation explores the nature of aliasing in DSP. Aliasing can occur in other types of systems where sampled signals are involved, for example, in videos and movies, as will be demonstrated. Introduction When a continuous-time signal that contains frequencies outside the baseband −!s =2 < ! < !s =2 is sampled, a phenomenon known as aliasing will arise whereby frequencies outside the baseband impersonate frequencies within the baseband. Frame # 2 Slide # 2 A. Antoniou Digital Signal Processing { Sec. 5.5.4 This presentation explores the nature of aliasing in DSP. Aliasing can occur in other types of systems where sampled signals are involved, for example, in videos and movies, as will be demonstrated. Introduction When a continuous-time signal that contains frequencies outside the baseband −!s =2 < ! < !s =2 is sampled, a phenomenon known as aliasing will arise whereby frequencies outside the baseband impersonate frequencies within the baseband. Aliasing is objectionable in practice and it must be prevented from occurring. Frame # 2 Slide # 3 A. Antoniou Digital Signal Processing { Sec. 5.5.4 Aliasing can occur in other types of systems where sampled signals are involved, for example, in videos and movies, as will be demonstrated. Introduction When a continuous-time signal that contains frequencies outside the baseband −!s =2 < ! < !s =2 is sampled, a phenomenon known as aliasing will arise whereby frequencies outside the baseband impersonate frequencies within the baseband. Aliasing is objectionable in practice and it must be prevented from occurring. This presentation explores the nature of aliasing in DSP. Frame # 2 Slide # 4 A. Antoniou Digital Signal Processing { Sec. 5.5.4 Introduction When a continuous-time signal that contains frequencies outside the baseband −!s =2 < ! < !s =2 is sampled, a phenomenon known as aliasing will arise whereby frequencies outside the baseband impersonate frequencies within the baseband. Aliasing is objectionable in practice and it must be prevented from occurring. This presentation explores the nature of aliasing in DSP. Aliasing can occur in other types of systems where sampled signals are involved, for example, in videos and movies, as will be demonstrated. Frame # 2 Slide # 5 A. Antoniou Digital Signal Processing { Sec. 5.5.4 By sampling the signal using a sampling frequency of !s rad/s, a discrete-time sinusoidal signal with frequency ! + !s rad/s, i.e., x(nT ) = sin[(! + !s )nT ] will be generated. Aliasing in DSP Consider a continuous-time sinusoidal signal with frequency ! + !s rad/s, i.e., x(t) = sin[(! + !s )t] where 0 < ! < !s =2. Frame # 3 Slide # 6 A. Antoniou Digital Signal Processing { Sec. 5.5.4 Aliasing in DSP Consider a continuous-time sinusoidal signal with frequency ! + !s rad/s, i.e., x(t) = sin[(! + !s )t] where 0 < ! < !s =2. By sampling the signal using a sampling frequency of !s rad/s, a discrete-time sinusoidal signal with frequency ! + !s rad/s, i.e., x(nT ) = sin[(! + !s )nT ] will be generated. Frame # 3 Slide # 7 A. Antoniou Digital Signal Processing { Sec. 5.5.4 Evidently, sampling a sinusoidal signal of frequency ! + !s will produce a discrete-time signal which is numerically identical to the discrete-time signal obtained by sampling a sinusoidal signal of frequency !. In effect, the sampled version of signal sin[(! + !s )t] will be aliased to the sampled version of sin(!)t or frequency ! + !s will be aliased to !. Aliasing in DSP Cont'd ··· x(nT ) = sin[(! + !s )nT ] Signal x(nT ) can be expressed as x(nT ) = sin !nT cos !s nT + cos !nT sin !s nT 2π 2π = sin !nT cos · nT + cos !nT sin · nT T T = sin !nT cos 2nπ + cos !nT sin 2nπ = sin !nT Frame # 4 Slide # 8 A. Antoniou Digital Signal Processing { Sec. 5.5.4 In effect, the sampled version of signal sin[(! + !s )t] will be aliased to the sampled version of sin(!)t or frequency ! + !s will be aliased to !. Aliasing in DSP Cont'd ··· x(nT ) = sin[(! + !s )nT ] Signal x(nT ) can be expressed as x(nT ) = sin !nT cos !s nT + cos !nT sin !s nT 2π 2π = sin !nT cos · nT + cos !nT sin · nT T T = sin !nT cos 2nπ + cos !nT sin 2nπ = sin !nT Evidently, sampling a sinusoidal signal of frequency ! + !s will produce a discrete-time signal which is numerically identical to the discrete-time signal obtained by sampling a sinusoidal signal of frequency !. Frame # 4 Slide # 9 A. Antoniou Digital Signal Processing { Sec. 5.5.4 Aliasing in DSP Cont'd ··· x(nT ) = sin[(! + !s )nT ] Signal x(nT ) can be expressed as x(nT ) = sin !nT cos !s nT + cos !nT sin !s nT 2π 2π = sin !nT cos · nT + cos !nT sin · nT T T = sin !nT cos 2nπ + cos !nT sin 2nπ = sin !nT Evidently, sampling a sinusoidal signal of frequency ! + !s will produce a discrete-time signal which is numerically identical to the discrete-time signal obtained by sampling a sinusoidal signal of frequency !. In effect, the sampled version of signal sin[(! + !s )t] will be aliased to the sampled version of sin(!)t or frequency ! + !s will be aliased to !. Frame # 4 Slide # 10 A. Antoniou Digital Signal Processing { Sec. 5.5.4 Aliasing in DSP Cont'd sin ωnT 3T 4T 5T T 2T nT sin[(ω+ωs)nT] Frame # 5 Slide # 11 A. Antoniou Digital Signal Processing { Sec. 5.5.4 As before, we can write x(nT ) = sin(!s − !)nT = sin !s nT cos !nT − cos !s nT sin !nT 2π 2π = sin · nT cos !nT − cos · nT sin !nT T T = sin 2nπ cos !nT − cos 2nπ sin !nT = − sin !nT = sin(−!nT ) In this case, frequency !s − ! will be aliased to frequency −!. Aliasing in DSP Cont'd Now consider a sinusoidal signal x(nT ) = sin[(!s − !)nT ] where 0 < ! < !s =2. Frame # 6 Slide # 12 A. Antoniou Digital Signal Processing { Sec. 5.5.4 In this case, frequency !s − ! will be aliased to frequency −!. Aliasing in DSP Cont'd Now consider a sinusoidal signal x(nT ) = sin[(!s − !)nT ] where 0 < ! < !s =2. As before, we can write x(nT ) = sin(!s − !)nT = sin !s nT cos !nT − cos !s nT sin !nT 2π 2π = sin · nT cos !nT − cos · nT sin !nT T T = sin 2nπ cos !nT − cos 2nπ sin !nT = − sin !nT = sin(−!nT ) Frame # 6 Slide # 13 A. Antoniou Digital Signal Processing { Sec. 5.5.4 Aliasing in DSP Cont'd Now consider a sinusoidal signal x(nT ) = sin[(!s − !)nT ] where 0 < ! < !s =2. As before, we can write x(nT ) = sin(!s − !)nT = sin !s nT cos !nT − cos !s nT sin !nT 2π 2π = sin · nT cos !nT − cos · nT sin !nT T T = sin 2nπ cos !nT − cos 2nπ sin !nT = − sin !nT = sin(−!nT ) In this case, frequency !s − ! will be aliased to frequency −!. Frame # 6 Slide # 14 A. Antoniou Digital Signal Processing { Sec. 5.5.4 If a signal has several frequency components outside the baseband, then all the frequencies beyond the Nyquist frequency will be aliased and a rather serious type of signal distortion will occur, which is known as aliasing distortion. Aliasing can be prevented by filtering out all frequency components outside the baseband using a lowpass filter. Filtering out the high-frequency content of the signal with a lowpass filter will, of course, distort the signal but the distortion introduced is less serious than aliasing distortion (see Chap. 6). Aliasing in DSP Cont'd Aliasing has occurred in the sinusoidal signals considered because the frequencies of the signals were outside the baseband −!s =2 < ! < !s =2. Frame # 7 Slide # 15 A. Antoniou Digital Signal Processing { Sec. 5.5.4 Aliasing can be prevented by filtering out all frequency components outside the baseband using a lowpass filter. Filtering out the high-frequency content of the signal with a lowpass filter will, of course, distort the signal but the distortion introduced is less serious than aliasing distortion (see Chap. 6). Aliasing in DSP Cont'd Aliasing has occurred in the sinusoidal signals considered because the frequencies of the signals were outside the baseband −!s =2 < ! < !s =2. If a signal has several frequency components outside the baseband, then all the frequencies beyond the Nyquist frequency will be aliased and a rather serious type of signal distortion will occur, which is known as aliasing distortion. Frame # 7 Slide # 16 A. Antoniou Digital Signal Processing { Sec. 5.5.4 Filtering out the high-frequency content of the signal with a lowpass filter will, of course, distort the signal but the distortion introduced is less serious than aliasing distortion (see Chap. 6). Aliasing in DSP Cont'd Aliasing has occurred in the sinusoidal signals considered because the frequencies of the signals were outside the baseband −!s =2 < ! < !s =2. If a signal has several frequency components outside the baseband, then all the frequencies beyond the Nyquist frequency will be aliased and a rather serious type of signal distortion will occur, which is known as aliasing distortion. Aliasing can be prevented by filtering out all frequency components outside the baseband using a lowpass filter. Frame # 7 Slide # 17 A. Antoniou Digital Signal Processing { Sec. 5.5.4 Aliasing in DSP Cont'd Aliasing has occurred in the sinusoidal signals considered because the frequencies of the signals were outside the baseband −!s =2 < ! < !s =2.
Recommended publications
  • Mathematical Basics of Bandlimited Sampling and Aliasing
    Signal Processing Mathematical basics of bandlimited sampling and aliasing Modern applications often require that we sample analog signals, convert them to digital form, perform operations on them, and reconstruct them as analog signals. The important question is how to sample and reconstruct an analog signal while preserving the full information of the original. By Vladimir Vitchev o begin, we are concerned exclusively The limits of integration for Equation 5 T about bandlimited signals. The reasons are specified only for one period. That isn’t a are both mathematical and physical, as we problem when dealing with the delta func- discuss later. A signal is said to be band- Furthermore, note that the asterisk in Equa- tion, but to give rigor to the above expres- limited if the amplitude of its spectrum goes tion 3 denotes convolution, not multiplica- sions, note that substitutions can be made: to zero for all frequencies beyond some thresh- tion. Since we know the spectrum of the The integral can be replaced with a Fourier old called the cutoff frequency. For one such original signal G(f), we need find only the integral from minus infinity to infinity, and signal (g(t) in Figure 1), the spectrum is zero Fourier transform of the train of impulses. To the periodic train of delta functions can be for frequencies above a. In that case, the do so we recognize that the train of impulses replaced with a single delta function, which is value a is also the bandwidth (BW) for this is a periodic function and can, therefore, be the basis for the periodic signal.
    [Show full text]
  • Efficient Supersampling Antialiasing for High-Performance Architectures
    Efficient Supersampling Antialiasing for High-Performance Architectures TR91-023 April, 1991 Steven Molnar The University of North Carolina at Chapel Hill Department of Computer Science CB#3175, Sitterson Hall Chapel Hill, NC 27599-3175 This work was supported by DARPA/ISTO Order No. 6090, NSF Grant No. DCI- 8601152 and IBM. UNC is an Equa.l Opportunity/Affirmative Action Institution. EFFICIENT SUPERSAMPLING ANTIALIASING FOR HIGH­ PERFORMANCE ARCHITECTURES Steven Molnar Department of Computer Science University of North Carolina Chapel Hill, NC 27599-3175 Abstract Techniques are presented for increasing the efficiency of supersampling antialiasing in high-performance graphics architectures. The traditional approach is to sample each pixel with multiple, regularly spaced or jittered samples, and to blend the sample values into a final value using a weighted average [FUCH85][DEER88][MAMM89][HAEB90]. This paper describes a new type of antialiasing kernel that is optimized for the constraints of hardware systems and produces higher quality images with fewer sample points than traditional methods. The central idea is to compute a Poisson-disk distribution of sample points for a small region of the screen (typically pixel-sized, or the size of a few pixels). Sample points are then assigned to pixels so that the density of samples points (rather than weights) for each pixel approximates a Gaussian (or other) reconstruction filter as closely as possible. The result is a supersampling kernel that implements importance sampling with Poisson-disk-distributed samples. The method incurs no additional run-time expense over standard weighted-average supersampling methods, supports successive-refinement, and can be implemented on any high-performance system that point samples accurately and has sufficient frame-buffer storage for two color buffers.
    [Show full text]
  • Super-Sampling Anti-Aliasing Analyzed
    Super-sampling Anti-aliasing Analyzed Kristof Beets Dave Barron Beyond3D [email protected] Abstract - This paper examines two varieties of super-sample anti-aliasing: Rotated Grid Super- Sampling (RGSS) and Ordered Grid Super-Sampling (OGSS). RGSS employs a sub-sampling grid that is rotated around the standard horizontal and vertical offset axes used in OGSS by (typically) 20 to 30°. RGSS is seen to have one basic advantage over OGSS: More effective anti-aliasing near the horizontal and vertical axes, where the human eye can most easily detect screen aliasing (jaggies). This advantage also permits the use of fewer sub-samples to achieve approximately the same visual effect as OGSS. In addition, this paper examines the fill-rate, memory, and bandwidth usage of both anti-aliasing techniques. Super-sampling anti-aliasing is found to be a costly process that inevitably reduces graphics processing performance, typically by a substantial margin. However, anti-aliasing’s posi- tive impact on image quality is significant and is seen to be very important to an improved gaming experience and worth the performance cost. What is Aliasing? digital medium like a CD. This translates to graphics in that a sample represents a specific moment as well as a Computers have always strived to achieve a higher-level specific area. A pixel represents each area and a frame of quality in graphics, with the goal in mind of eventu- represents each moment. ally being able to create an accurate representation of reality. Of course, to achieve reality itself is impossible, At our current level of consumer technology, it simply as reality is infinitely detailed.
    [Show full text]
  • Discrete - Time Signals and Systems
    Discrete - Time Signals and Systems Sampling – II Sampling theorem & Reconstruction Yogananda Isukapalli Sampling at diffe- -rent rates From these figures, it can be concluded that it is very important to sample the signal adequately to avoid problems in reconstruction, which leads us to Shannon’s sampling theorem 2 Fig:7.1 Claude Shannon: The man who started the digital revolution Shannon arrived at the revolutionary idea of digital representation by sampling the information source at an appropriate rate, and converting the samples to a bit stream Before Shannon, it was commonly believed that the only way of achieving arbitrarily small probability of error in a communication channel was to 1916-2001 reduce the transmission rate to zero. All this changed in 1948 with the publication of “A Mathematical Theory of Communication”—Shannon’s landmark work Shannon’s Sampling theorem A continuous signal xt( ) with frequencies no higher than fmax can be reconstructed exactly from its samples xn[ ]= xn [Ts ], if the samples are taken at a rate ffs ³ 2,max where fTss= 1 This simple theorem is one of the theoretical Pillars of digital communications, control and signal processing Shannon’s Sampling theorem, • States that reconstruction from the samples is possible, but it doesn’t specify any algorithm for reconstruction • It gives a minimum sampling rate that is dependent only on the frequency content of the continuous signal x(t) • The minimum sampling rate of 2fmax is called the “Nyquist rate” Example1: Sampling theorem-Nyquist rate x( t )= 2cos(20p t ), find the Nyquist frequency ? xt( )= 2cos(2p (10) t ) The only frequency in the continuous- time signal is 10 Hz \ fHzmax =10 Nyquist sampling rate Sampling rate, ffsnyq ==2max 20 Hz Continuous-time sinusoid of frequency 10Hz Fig:7.2 Sampled at Nyquist rate, so, the theorem states that 2 samples are enough per period.
    [Show full text]
  • Efficient Multidimensional Sampling
    EUROGRAPHICS 2002 / G. Drettakis and H.-P. Seidel Volume 21 (2002 ), Number 3 (Guest Editors) Efficient Multidimensional Sampling Thomas Kollig and Alexander Keller Department of Computer Science, Kaiserslautern University, Germany Abstract Image synthesis often requires the Monte Carlo estimation of integrals. Based on a generalized con- cept of stratification we present an efficient sampling scheme that consistently outperforms previous techniques. This is achieved by assembling sampling patterns that are stratified in the sense of jittered sampling and N-rooks sampling at the same time. The faster convergence and improved anti-aliasing are demonstrated by numerical experiments. Categories and Subject Descriptors (according to ACM CCS): G.3 [Probability and Statistics]: Prob- abilistic Algorithms (including Monte Carlo); I.3.2 [Computer Graphics]: Picture/Image Generation; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism. 1. Introduction general concept of stratification than just joining jit- tered and Latin hypercube sampling. Since our sam- Many rendering tasks are given in integral form and ples are highly correlated and satisfy a minimum dis- usually the integrands are discontinuous and of high tance property, noise artifacts are attenuated much 22 dimension, too. Since the Monte Carlo method is in- more efficiently and anti-aliasing is improved. dependent of dimension and applicable to all square- integrable functions, it has proven to be a practical tool for numerical integration. It relies on the point 2. Monte Carlo Integration sampling paradigm and such on sample placement. In- The Monte Carlo method of integration estimates the creasing the uniformity of the samples is crucial for integral of a square-integrable function f over the s- the efficiency of the stochastic method and the level dimensional unit cube by of noise contained in the rendered images.
    [Show full text]
  • Signal Sampling
    FYS3240 PC-based instrumentation and microcontrollers Signal sampling Spring 2017 – Lecture #5 Bekkeng, 30.01.2017 Content – Aliasing – Sampling – Analog to Digital Conversion (ADC) – Filtering – Oversampling – Triggering Analog Signal Information Three types of information: • Level • Shape • Frequency Sampling Considerations – An analog signal is continuous – A sampled signal is a series of discrete samples acquired at a specified sampling rate – The faster we sample the more our sampled signal will look like our actual signal Actual Signal – If not sampled fast enough a problem known as aliasing will occur Sampled Signal Aliasing Adequately Sampled SignalSignal Aliased Signal Bandwidth of a filter • The bandwidth B of a filter is defined to be between the -3 dB points Sampling & Nyquist’s Theorem • Nyquist’s sampling theorem: – The sample frequency should be at least twice the highest frequency contained in the signal Δf • Or, more correctly: The sample frequency fs should be at least twice the bandwidth Δf of your signal 0 f • In mathematical terms: fs ≥ 2 *Δf, where Δf = fhigh – flow • However, to accurately represent the shape of the ECG signal signal, or to determine peak maximum and peak locations, a higher sampling rate is required – Typically a sample rate of 10 times the bandwidth of the signal is required. Illustration from wikipedia Sampling Example Aliased Signal 100Hz Sine Wave Sampled at 100Hz Adequately Sampled for Frequency Only (Same # of cycles) 100Hz Sine Wave Sampled at 200Hz Adequately Sampled for Frequency and Shape 100Hz Sine Wave Sampled at 1kHz Hardware Filtering • Filtering – To remove unwanted signals from the signal that you are trying to measure • Analog anti-aliasing low-pass filtering before the A/D converter – To remove all signal frequencies that are higher than the input bandwidth of the device.
    [Show full text]
  • F • Aliasing Distortion • Quantization Noise • Bandwidth Limitations • Cost of A/D & D/A Conversion
    Aliasing • Aliasing distortion • Quantization noise • A 1 Hz Sine wave sampled at 1.8 Hz • Bandwidth limitations • A 0.8 Hz sine wave sampled at 1.8 Hz • Cost of A/D & D/A conversion -fs fs THE UNIVERSITY OF TEXAS AT AUSTIN Advantages of Digital Systems Perfect reconstruction of a Better trade-off between signal is possible even after bandwidth and noise severe distortion immunity performance digital analog bandwidth Increase signal-to-noise ratio simply by adding more bits SNR = -7.2 + 6 dB/bit THE UNIVERSITY OF TEXAS AT AUSTIN Advantages of Digital Systems Programmability • Modifiable in the field • Implement multiple standards • Better user interfaces • Tolerance for changes in specifications • Get better use of hardware for low-speed operations • Debugging • User programmability THE UNIVERSITY OF TEXAS AT AUSTIN Disadvantages of Digital Systems Programmability • Speed is too slow for some applications • High average power and peak power consumption RISC (2 Watts) vs. DSP (50 mW) DATA PROG MEMORY MEMORY HARVARD ARCHITECTURE • Aliasing from undersampling • Clipping from quantization Q[v] v v THE UNIVERSITY OF TEXAS AT AUSTIN Analog-to-Digital Conversion 1 --- T h(t) Q[.] xt() yt() ynT() yˆ()nT Anti-Aliasing Sampler Quantizer Filter xt() y(nT) t n y(t) ^y(nT) t n THE UNIVERSITY OF TEXAS AT AUSTIN Resampling Changing the Sampling Rate • Conversion between audio formats Compact 48.0 Digital Disc ---------- Audio Tape 44.1 KHz44.1 48 KHz • Speech compression Speech 1 Speech for on DAT --- Telephone 48 KHz 6 8 KHz • Video format conversion
    [Show full text]
  • Evaluating Oscilloscope Sample Rates Vs. Sampling Fidelity: How to Make the Most Accurate Digital Measurements
    AC 2011-2914: EVALUATING OSCILLOSCOPE SAMPLE RATES VS. SAM- PLING FIDELITY Johnnie Lynn Hancock, Agilent Technologies About the Author Johnnie Hancock is a Product Manager at Agilent Technologies Digital Test Division. He began his career with Hewlett-Packard in 1979 as an embedded hardware designer, and holds a patent for digital oscillo- scope amplifier calibration. Johnnie is currently responsible for worldwide application support activities that promote Agilent’s digitizing oscilloscopes and he regularly speaks at technical conferences world- wide. Johnnie graduated from the University of South Florida with a degree in electrical engineering. In his spare time, he enjoys spending time with his four grandchildren and restoring his century-old Victorian home located in Colorado Springs. Contact Information: Johnnie Hancock Agilent Technologies 1900 Garden of the Gods Rd Colorado Springs, CO 80907 USA +1 (719) 590-3183 johnnie [email protected] c American Society for Engineering Education, 2011 Evaluating Oscilloscope Sample Rates vs. Sampling Fidelity: How to Make the Most Accurate Digital Measurements Introduction Digital storage oscilloscopes (DSO) are the primary tools used today by digital designers to perform signal integrity measurements such as setup/hold times, rise/fall times, and eye margin tests. High performance oscilloscopes are also widely used in university research labs to accurately characterize high-speed digital devices and systems, as well as to perform high energy physics experiments such as pulsed laser testing. In addition, general-purpose oscilloscopes are used extensively by Electrical Engineering students in their various EE analog and digital circuits lab courses. The two key banner specifications that affect an oscilloscope’s signal integrity measurement accuracy are bandwidth and sample rate.
    [Show full text]
  • Enhancing ADC Resolution by Oversampling
    AVR121: Enhancing ADC resolution by oversampling 8-bit Features Microcontrollers • Increasing the resolution by oversampling • Averaging and decimation • Noise reduction by averaging samples Application Note 1 Introduction Atmel’s AVR controller offers an Analog to Digital Converter with 10-bit resolution. In most cases 10-bit resolution is sufficient, but in some cases higher accuracy is desired. Special signal processing techniques can be used to improve the resolution of the measurement. By using a method called ‘Oversampling and Decimation’ higher resolution might be achieved, without using an external ADC. This Application Note explains the method, and which conditions need to be fulfilled to make this method work properly. Figure 1-1. Enhancing the resolution. A/D A/D A/D 10-bit 11-bit 12-bit t t t Rev. 8003A-AVR-09/05 2 Theory of operation Before reading the rest of this Application Note, the reader is encouraged to read Application Note AVR120 - ‘Calibration of the ADC’, and the ADC section in the AVR datasheet. The following examples and numbers are calculated for Single Ended Input in a Free Running Mode. ADC Noise Reduction Mode is not used. This method is also valid in the other modes, though the numbers in the following examples will be different. The ADCs reference voltage and the ADCs resolution define the ADC step size. The ADC’s reference voltage, VREF, may be selected to AVCC, an internal 2.56V / 1.1V reference, or a reference voltage at the AREF pin. A lower VREF provides a higher voltage precision but minimizes the dynamic range of the input signal.
    [Show full text]
  • Lecture 12: Sampling, Aliasing, and the Discrete Fourier Transform Foundations of Digital Signal Processing
    Lecture 12: Sampling, Aliasing, and the Discrete Fourier Transform Foundations of Digital Signal Processing Outline • Review of Sampling • The Nyquist-Shannon Sampling Theorem • Continuous-time Reconstruction / Interpolation • Aliasing and anti-Aliasing • Deriving Transforms from the Fourier Transform • Discrete-time Fourier Transform, Fourier Series, Discrete-time Fourier Series • The Discrete Fourier Transform Foundations of Digital Signal Processing Lecture 12: Sampling, Aliasing, and the Discrete Fourier Transform 1 News Homework #5 . Due this week . Submit via canvas Coding Problem #4 . Due this week . Submit via canvas Foundations of Digital Signal Processing Lecture 12: Sampling, Aliasing, and the Discrete Fourier Transform 2 Exam 1 Grades The class did exceedingly well . Mean: 89.3 . Median: 91.5 Foundations of Digital Signal Processing Lecture 12: Sampling, Aliasing, and the Discrete Fourier Transform 3 Lecture 12: Sampling, Aliasing, and the Discrete Fourier Transform Foundations of Digital Signal Processing Outline • Review of Sampling • The Nyquist-Shannon Sampling Theorem • Continuous-time Reconstruction / Interpolation • Aliasing and anti-Aliasing • Deriving Transforms from the Fourier Transform • Discrete-time Fourier Transform, Fourier Series, Discrete-time Fourier Series • The Discrete Fourier Transform Foundations of Digital Signal Processing Lecture 12: Sampling, Aliasing, and the Discrete Fourier Transform 4 Sampling Discrete-Time Fourier Transform Foundations of Digital Signal Processing Lecture 12: Sampling, Aliasing,
    [Show full text]
  • Multidimensional Sampling Dr
    Multidimensional Sampling Dr. Vishal Monga Motivation for the General Case for Sampling We need the more general case to treat three important applications. 1. Human Vision System: the human vision system is a nonlinear, spatially- varying, non-uniformly sampled system. Rods and cones on the retina, which spatially sample are not arranged in rows and columns. a. Hexagonal Sampling: when modeled as a linear shift-invariant system, the human visual system is circularly bandlimited (lowpass in radial frequency). The optimal uniform sampling grid is hexagonal. Optimal means that we need the fewest discrete-time samples to sample the continuous-space analog signal without aliasing. b. Foveated grid: This is based on the fovea in the retina. When you focus on an object, you sample the object at a high resolution, and the resolution falls off away from the point-of-focus. Shown below is a simple example of a foveated grid. The grid is a 4 x 4 uniform sampling with each of the middle four grids subdivided into 4 x 4 grids themselves. The point of focus is at the middle of the grid. We can convert this grid to a uniform grid in several ways. For example, we could start with a rectangular grid and keep the resolution at the point-of-focus. Then, away from the point-of-focus, we can average the pixel values in increasingly larger blocks of samples. This approach allows the use a foveated grid while maintaining compatibility with systems that require rectangular sampling (e.g. image and video compression standards). 2. Television 650 samples /row 362.5 rows /interlace 2 interlaces /frame 30 frames /sec No two samples taken at the same instant of time Can signals be sampled this way without losing information? How can we handle a.
    [Show full text]
  • MULTIRATE SIGNAL PROCESSING Multirate Signal Processing
    MULTIRATE SIGNAL PROCESSING Multirate Signal Processing • Definition: Signal processing which uses more than one sampling rate to perform operations • Upsampling increases the sampling rate • Downsampling reduces the sampling rate • Reference: Digital Signal Processing, DeFatta, Lucas, and Hodgkiss B. Baas, EEC 281 431 Multirate Signal Processing • Advantages of lower sample rates –May require less processing –Likely to reduce power dissipation, P = CV2 f, where f is frequently directly proportional to the sample rate –Likely to require less storage • Advantages of higher sample rates –May simplify computation –May simplify surrounding analog and RF circuitry • Remember that information up to a frequency f requires a sampling rate of at least 2f. This is the Nyquist sampling rate. –Or we can equivalently say the Nyquist sampling rate is ½ the sampling frequency, fs B. Baas, EEC 281 432 Upsampling Upsampling or Interpolation •For an upsampling by a factor of I, add I‐1 zeros between samples in the original sequence •An upsampling by a factor I is commonly written I For example, upsampling by two: 2 • Obviously the number of samples will approximately double after 2 •Note that if the sampling frequency doubles after an upsampling by two, that t the original sample sequence will occur at the same points in time t B. Baas, EEC 281 434 Original Signal Spectrum •Example signal with most energy near DC •Notice 5 spectral “bumps” between large signal “bumps” B. Baas, EEC 281 π 2π435 Upsampled Signal (Time) •One zero is inserted between the original samples for 2x upsampling B. Baas, EEC 281 436 Upsampled Signal Spectrum (Frequency) • Spectrum of 2x upsampled signal •Notice the location of the (now somewhat compressed) five “bumps” on each side of π B.
    [Show full text]