S S symmetry Article Adaptive Sub-Nyquist Spectrum Sensing for Ultra-Wideband Communication Systems † Yong Lu , Shaohe Lv and Xiaodong Wang * Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China;
[email protected] (Y.L.);
[email protected] (S.L.) * Correspondence:
[email protected] † This paper is an extended version of our paper published in 2014 IEEE 17th International Conference on Computational Science and Engineering (CSE), Chengdu, China, 19–21 December 2014. Received: 14 January 2019; Accepted: 3 March 2019; Published: 7 March 2019 Abstract: With the ever-increasing demand for high-speed wireless data transmission, ultra-wideband spectrum sensing is critical to support the cognitive communication over an ultra-wide frequency band for ultra-wideband communication systems. However, it is challenging for the analog-to-digital converter design to fulfill the Nyquist rate for an ultra-wideband frequency band. Therefore, we explore the spectrum sensing mechanism based on the sub-Nyquist sampling and conduct extensive experiments to investigate the influence of sampling rate, bandwidth resolution and the signal-to-noise ratio on the accuracy of sub-Nyquist spectrum sensing. Afterward, an adaptive policy is proposed to determine the optimal sampling rate, and bandwidth resolution when the spectrum occupation or the strength of the existing signals is changed. The performance of the policy is verified by simulations. Keywords: ultra-wideband spectrum sensing; energy detection; cognitive radio; sub-Nyquist sensing; Chinese remainder theorem 1. Introduction After decades of rapid development, wireless technologies have been intensively applied to almost every field from daily communications to mobile medical and battlefield communications.