The Onion Router and the Darkweb
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uila Supported Apps
Uila Supported Applications and Protocols updated Oct 2020 Application/Protocol Name Full Description 01net.com 01net website, a French high-tech news site. 050 plus is a Japanese embedded smartphone application dedicated to 050 plus audio-conferencing. 0zz0.com 0zz0 is an online solution to store, send and share files 10050.net China Railcom group web portal. This protocol plug-in classifies the http traffic to the host 10086.cn. It also 10086.cn classifies the ssl traffic to the Common Name 10086.cn. 104.com Web site dedicated to job research. 1111.com.tw Website dedicated to job research in Taiwan. 114la.com Chinese web portal operated by YLMF Computer Technology Co. Chinese cloud storing system of the 115 website. It is operated by YLMF 115.com Computer Technology Co. 118114.cn Chinese booking and reservation portal. 11st.co.kr Korean shopping website 11st. It is operated by SK Planet Co. 1337x.org Bittorrent tracker search engine 139mail 139mail is a chinese webmail powered by China Mobile. 15min.lt Lithuanian news portal Chinese web portal 163. It is operated by NetEase, a company which 163.com pioneered the development of Internet in China. 17173.com Website distributing Chinese games. 17u.com Chinese online travel booking website. 20 minutes is a free, daily newspaper available in France, Spain and 20minutes Switzerland. This plugin classifies websites. 24h.com.vn Vietnamese news portal 24ora.com Aruban news portal 24sata.hr Croatian news portal 24SevenOffice 24SevenOffice is a web-based Enterprise resource planning (ERP) systems. 24ur.com Slovenian news portal 2ch.net Japanese adult videos web site 2Shared 2shared is an online space for sharing and storage. -
Arxiv:1907.07120V1 [Cs.CY] 16 Jul 2019 1 Introduction That China Hindered Access to I2P by Poisoning DNS Resolu- Tions of the I2P Homepage and Three Reseed Servers
Measuring I2P Censorship at a Global Scale Nguyen Phong Hoang Sadie Doreen Michalis Polychronakis Stony Brook University The Invisible Internet Project Stony Brook University Abstract required flexibility for conducting fine-grained measurements on demand. We demonstrate these benefits by conducting an The prevalence of Internet censorship has prompted the in-depth investigation of the extent to which the I2P (invis- creation of several measurement platforms for monitoring ible Internet project) anonymity network is blocked across filtering activities. An important challenge faced by these different countries. platforms revolves around the trade-off between depth of mea- Due to the prevalence of Internet censorship and online surement and breadth of coverage. In this paper, we present surveillance in recent years [7, 34, 62], many pro-privacy and an opportunistic censorship measurement infrastructure built censorship circumvention tools, such as proxy servers, virtual on top of a network of distributed VPN servers run by vol- private networks (VPN), and anonymity networks have been unteers, which we used to measure the extent to which the developed. Among these tools, Tor [23] (based on onion rout- I2P anonymity network is blocked around the world. This ing [39,71]) and I2P [85] (based on garlic routing [24,25,33]) infrastructure provides us with not only numerous and ge- are widely used by privacy-conscious and censored users, as ographically diverse vantage points, but also the ability to they provide a higher level of privacy and anonymity [42]. conduct in-depth measurements across all levels of the net- In response, censors often hinder access to these services work stack. -
The New England College of Optometry Peer to Peer (P2P) Policy
The New England College of Optometry Peer To Peer (P2P) Policy Created in Compliance with the Higher Education Opportunity Act (HEOA) Peer-to-Peer File Sharing Requirements Overview: Peer-to-peer (P2P) file sharing applications are used to connect a computer directly to other computers in order to transfer files between the systems. Sometimes these applications are used to transfer copyrighted materials such as music and movies. Examples of P2P applications are BitTorrent, Gnutella, eMule, Ares Galaxy, Megaupload, Azureus, PPStream, Pando, Ares, Fileguri, Kugoo. Of these applications, BitTorrent has value in the scientific community. For purposes of this policy, The New England College of Optometry (College) refers to the College and its affiliate New England Eye Institute, Inc. Compliance: In order to comply with both the intent of the College’s Copyright Policy, the Digital Millennium Copyright Act (DMCA) and with the Higher Education Opportunity Act’s (HEOA) file sharing requirements, all P2P file sharing applications are to be blocked at the firewall to prevent illegal downloading as well as to preserve the network bandwidth so that the College internet access is neither compromised nor diminished. Starting in September 2010, the College IT Department will block all well-known P2P ports on the firewall at the application level. If your work requires the use of BitTorrent or another program, an exception may be made as outlined below. The College will audit network usage/activity reports to determine if there is unauthorized P2P activity; the IT Department does random spot checks for new P2P programs every 72 hours and immediately blocks new and emerging P2P networks at the firewall. -
Pairing-Based Onion Routing with Improved Forward Secrecy ∗
Pairing-Based Onion Routing with Improved Forward Secrecy ∗ Aniket Kate Greg M. Zaverucha Ian Goldberg David R. Cheriton School of Computer Science University of Waterloo Waterloo, ON, Canada N2L 3G1 {akate,gzaveruc,iang}@cs.uwaterloo.ca Abstract This paper presents new protocols for onion routing anonymity networks. We define a provably secure privacy-preserving key agreement scheme in an identity-based infrastructure setting, and use it to forge new onion routing circuit constructions. These constructions, based on a user’s selection, offer immediate or eventual forward secrecy at each node in a circuit and require significantly less computation and communication than the telescoping mechanism used by Tor. Further, the use of the identity-based infrastructure also leads to a reduction in the required amount of authenticated directory information. Therefore, our constructions provide practical ways to allow onion routing anonymity networks to scale gracefully. Keywords: onion routing, Tor, pairing-based cryptography, anonymous key agreement, forward secrecy 1 Introduction Over the years, a large number of anonymity networks have been proposed and some have been implemented. Common to many of them is onion routing [RSG98], a technique whereby a message is wrapped in multiple layers of encryption, forming an onion. As the message is delivered via a number of intermediate onion routers (ORs), or nodes, each node decrypts one of the layers, and forwards the message to the next node. This idea goes back to Chaum [Cha81] and has been used to build both low- and high-latency communication networks. A common realization of an onion routing system is to arrange a collection of nodes that will relay traffic for users of the system. -
Hacking the Web
Hacking the Web (C) 2009-2020 Arun Viswanathan Ellis Horowitz Marco Papa 1 Table of Contents } General Introduction } Authentication Attacks } Client-Side Attacks } Injection Attacks } Recent Attacks } Privacy Tools 2 (C) 2009-2020 Arun Viswanathan Ellis Horowitz Marco Papa Why secure the Web? } The Web has evolved into an ubiquitous entity providing a rich and common platform for connecting people and doing business. } BUT, the Web also offers a cheap, effective, convenient and anonymous platform for crime. } To get an idea, the Web has been used for the following types of criminal activities (source: The Web Hacking Incidents Database (WHID) http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database) } Chaos (Attack on Russian nuclear power websites amid accident rumors (5Jan09) } Deceit (SAMY XSS Worm – Nov 2005) } Extortion (David Aireys domain hijacked due to a CSRF (cross site request forgery) flaw in Gmail – 30Dec2007) } Identity Theft (XSS on Yahoo! Hot jobs – Oct 2008) } Information Warfare (Israeli Gaza War - Jan 2009 / Balkan Wars – Apr 2008 ) } Monetary Loss (eBay fraud using XSS) } Physical Pain (Hackers post on epilepsy forum causes migraines and seizures – May 2008) } Political Defacements (Hacker changes news release on Sheriffs website – Jul 2008) (Obama, Oreilly and Britneys Twitter accounts hacked and malicious comments posted – Jan 09) } Chinese Gaming sites hacked (Dec. 2011) 3 Copyright(C) 2009 (c) -20092020- 2019Arun Arun Viswanathan Viswanathan Ellis HorowitzEllis Horowitz Marco Marco Papa Papa -
Hotspot Feature for Wi-Fi Clients with RADIUS User Authentication on Digi Transport
Application Note 56 Hotspot feature for Wi-Fi clients with RADIUS User Authentication on Digi TransPort. Digi Support November 2015 1 Contents 1 Introduction ......................................................................................................................................... 4 1.1 Outline ......................................................................................................................................... 4 1.2 Assumptions ................................................................................................................................ 4 1.3 Corrections .................................................................................................................................. 4 2 Version .................................................................................................................................................5 3 Configuration .......................................................................................................................................5 3.1 Mobile Interface Configuration .....................................................................................................5 3.2 Ethernet Interface Configuration ................................................................................................. 6 3.2.1 ETH 0 Configuration ................................................................................................................. 6 3.2.2 ETH 12 Logical Interface Configuration .................................................................................... -
An Evolving Threat the Deep Web
8 An Evolving Threat The Deep Web Learning Objectives distribute 1. Explain the differences between the deep web and darknets.or 2. Understand how the darknets are accessed. 3. Discuss the hidden wiki and how it is useful to criminals. 4. Understand the anonymity offered by the deep web. 5. Discuss the legal issues associated withpost, use of the deep web and the darknets. The action aimed to stop the sale, distribution and promotion of illegal and harmful items, including weapons and drugs, which were being sold on online ‘dark’ marketplaces. Operation Onymous, coordinated by Europol’s Europeancopy, Cybercrime Centre (EC3), the FBI, the U.S. Immigration and Customs Enforcement (ICE), Homeland Security Investigations (HSI) and Eurojust, resulted in 17 arrests of vendors andnot administrators running these online marketplaces and more than 410 hidden services being taken down. In addition, bitcoins worth approximately USD 1 million, EUR 180,000 Do in cash, drugs, gold and silver were seized. —Europol, 20141 143 Copyright ©2018 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 144 Cyberspace, Cybersecurity, and Cybercrime THINK ABOUT IT 8.1 Surface Web and Deep Web Google, Facebook, and any website you can What Would You Do? find via traditional search engines (Internet Explorer, Chrome, Firefox, etc.) are all located 1. The deep web offers users an anonym- on the surface web. It is likely that when you ity that the surface web cannot provide. use the Internet for research and/or social What would you do if you knew that purposes you are using the surface web. -
Into the Reverie: Exploration of the Dream Market
Into the Reverie: Exploration of the Dream Market Theo Carr1, Jun Zhuang2, Dwight Sablan3, Emma LaRue4, Yubao Wu5, Mohammad Al Hasan2, and George Mohler2 1Department of Mathematics, Northeastern University, Boston, MA 2Department of Computer & Information Science, Indiana University - Purdue University, Indianapolis, IN 3Department of Mathematics and Computer Science, University of Guam, Guam 4Department of Mathematics and Statistics, University of Arkansas at Little Rock, AK 5Department of Computer Science, Georgia State University, Atlanta, GA [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract—Since the emergence of the Silk Road market in Onymous" in 2014, a worldwide action taken by law enforce- the early 2010s, dark web ‘cryptomarkets’ have proliferated and ment and judicial agencies aimed to put a kibosh on these offered people an online platform to buy and sell illicit drugs, illicit behaviors [5]. Law enforcement interventions such as relying on cryptocurrencies such as Bitcoin for anonymous trans- actions. However, recent studies have highlighted the potential for Onymous, along with exit scams and hacks, have successfully de-anonymization of bitcoin transactions, bringing into question shut down numerous cryptomarkets, including AlphaBay, Silk the level of anonymity afforded by cryptomarkets. We examine a Road, Dream, and more recently, Wall Street [6]. Despite these set of over 100,000 product reviews from several cryptomarkets interruptions, new markets have continued to proliferate. The collected in 2018 and 2019 and conduct a comprehensive analysis authors of [7] note that there appears to be a consistent daily of the markets, including an examination of the distribution of drug sales and revenue among vendors, and a comparison demand of about $500,000 for illicit products on the dark web, of incidences of opioid sales to overdose deaths in a US city. -
Multiple Internet Connections by Balancing Traffic and Managing Failover with Zeroshell
Multiple Internet Connections by Balancing Traffic and Managing Failover With Zeroshell The purpose of this document is to describe the creation of a router to access a network that uses multiple Internet connections in order to balance the outgoing LAN demand and to obtain network access redundancy, managing fault situations for one or multiple lines. To reach our objective, we shall use the Net Balancer module by Zeroshell. Lastly, we shall examine the possibility of aggregation (Bonding) of VPN aimed at increasing the bandwidth for point-to-point connection between remote locations via the Internet. Is it really possible to increase the Internet connection bandwidth? The answer to this question is not, "yes, absolutely." It depends on what you mean by increasing the Internet connection bandwidth. In essence, the Net Balancer distributes requests originating from the LAN by round-robin (weighed) policy over multiple Internet gateways. In other words, if at a given point in time there is only one LAN user making only one TCP connection (e.g. he executes only one download from the web), his traffic will flow from a single gateway, thus it would not benefit from balanced connections. Instead, if the LAN is crowded with users, each executing multiple requests at the same time, as a whole, their connections will have access to a higher bandwidth, equal to the sum of the single-access bandwidths. We then conclude that a single connection may never have more bandwidth than what offered by a single link, while multiple simultaneous connections will, on average, altogether have access to a greater bandwidth, which will stretch to the sum of the bandwidths of all the Internet links being balanced. -
P2P Protocols
CHAPTER 1 P2P Protocols Introduction This chapter lists the P2P protocols currently supported by Cisco SCA BB. For each protocol, the following information is provided: • Clients of this protocol that are supported, including the specific version supported. • Default TCP ports for these P2P protocols. Traffic on these ports would be classified to the specific protocol as a default, in case this traffic was not classified based on any of the protocol signatures. • Comments; these mostly relate to the differences between various Cisco SCA BB releases in the level of support for the P2P protocol for specified clients. Table 1-1 P2P Protocols Protocol Name Validated Clients TCP Ports Comments Acestream Acestream PC v2.1 — Supported PC v2.1 as of Protocol Pack #39. Supported PC v3.0 as of Protocol Pack #44. Amazon Appstore Android v12.0000.803.0C_642000010 — Supported as of Protocol Pack #44. Angle Media — None Supported as of Protocol Pack #13. AntsP2P Beta 1.5.6 b 0.9.3 with PP#05 — — Aptoide Android v7.0.6 None Supported as of Protocol Pack #52. BaiBao BaiBao v1.3.1 None — Baidu Baidu PC [Web Browser], Android None Supported as of Protocol Pack #44. v6.1.0 Baidu Movie Baidu Movie 2000 None Supported as of Protocol Pack #08. BBBroadcast BBBroadcast 1.2 None Supported as of Protocol Pack #12. Cisco Service Control Application for Broadband Protocol Reference Guide 1-1 Chapter 1 P2P Protocols Introduction Table 1-1 P2P Protocols (continued) Protocol Name Validated Clients TCP Ports Comments BitTorrent BitTorrent v4.0.1 6881-6889, 6969 Supported Bittorrent Sync as of PP#38 Android v-1.1.37, iOS v-1.1.118 ans PC exeem v0.23 v-1.1.27. -
Threat Modeling and Circumvention of Internet Censorship by David Fifield
Threat modeling and circumvention of Internet censorship By David Fifield A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor J.D. Tygar, Chair Professor Deirdre Mulligan Professor Vern Paxson Fall 2017 1 Abstract Threat modeling and circumvention of Internet censorship by David Fifield Doctor of Philosophy in Computer Science University of California, Berkeley Professor J.D. Tygar, Chair Research on Internet censorship is hampered by poor models of censor behavior. Censor models guide the development of circumvention systems, so it is important to get them right. A censor model should be understood not just as a set of capabilities|such as the ability to monitor network traffic—but as a set of priorities constrained by resource limitations. My research addresses the twin themes of modeling and circumvention. With a grounding in empirical research, I build up an abstract model of the circumvention problem and examine how to adapt it to concrete censorship challenges. I describe the results of experiments on censors that probe their strengths and weaknesses; specifically, on the subject of active probing to discover proxy servers, and on delays in their reaction to changes in circumvention. I present two circumvention designs: domain fronting, which derives its resistance to blocking from the censor's reluctance to block other useful services; and Snowflake, based on quickly changing peer-to-peer proxy servers. I hope to change the perception that the circumvention problem is a cat-and-mouse game that affords only incremental and temporary advancements. -
A Framework for Identifying Host-Based Artifacts in Dark Web Investigations
Dakota State University Beadle Scholar Masters Theses & Doctoral Dissertations Fall 11-2020 A Framework for Identifying Host-based Artifacts in Dark Web Investigations Arica Kulm Dakota State University Follow this and additional works at: https://scholar.dsu.edu/theses Part of the Databases and Information Systems Commons, Information Security Commons, and the Systems Architecture Commons Recommended Citation Kulm, Arica, "A Framework for Identifying Host-based Artifacts in Dark Web Investigations" (2020). Masters Theses & Doctoral Dissertations. 357. https://scholar.dsu.edu/theses/357 This Dissertation is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses & Doctoral Dissertations by an authorized administrator of Beadle Scholar. For more information, please contact [email protected]. A FRAMEWORK FOR IDENTIFYING HOST-BASED ARTIFACTS IN DARK WEB INVESTIGATIONS A dissertation submitted to Dakota State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cyber Defense November 2020 By Arica Kulm Dissertation Committee: Dr. Ashley Podhradsky Dr. Kevin Streff Dr. Omar El-Gayar Cynthia Hetherington Trevor Jones ii DISSERTATION APPROVAL FORM This dissertation is approved as a credible and independent investigation by a candidate for the Doctor of Philosophy in Cyber Defense degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of this dissertation does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department or university. Student Name: Arica Kulm Dissertation Title: A Framework for Identifying Host-based Artifacts in Dark Web Investigations Dissertation Chair: Date: 11/12/20 Committee member: Date: 11/12/2020 Committee member: Date: Committee member: Date: Committee member: Date: iii ACKNOWLEDGMENT First, I would like to thank Dr.