The Making of the Standard Model Steven Weinberg Theory Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unrestricted Immigration and the Foreign Dominance Of
Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of -
Steven Weinberg Cv Born
STEVEN WEINBERG CV BORN: May 3, 1933, in New York, N.Y. EDUCATION: Cornell University, 1950–1954 (A.B., 1954) Copenhagen Institute for Theoretical Physics, 1954–1955 Princeton University, 1955–1957 (Ph.D.,1957). HONORARY DEGREES: Harvard University, A.M., 1973 Knox College, D.Sc., 1978 University of Chicago, Sc.D., 1978 University of Rochester, Sc.D., l979 Yale University, Sc.D., 1979 City University of New York,Sc.D., 1980 Clark University, Sc.D., 1982 Dartmouth College, Sc.D., 1984 Weizmann Institute, Ph.D. Hon.Caus., 1985 Washington College, D.Litt., 1985 Columbia University, Sc.D., 1990 University of Salamanca, Sc.D., 1992 University of Padua, Ph.D. Hon.Caus., 1992 University of Barcelona, Sc.D., 1996 Bates College, Sc. D., 2002 McGill University, Sc. D., 2003 University of Waterloo, Sc. D., 2004 Renssalear Polytechnic Institue, Sc. D., 2016 Rockefeller University, Sc. D., 2017 PRESENT POSITION: Josey Regental Professor of Science, University of Texas, 1982– PAST POSITIONS: Columbia University, 1957–1959 Lawrence Radiation Laboratory, 1959–1960 University of California, Berkeley, 1960–1969 On leave, Imperial College, London, 1961–1962 Steven Weinberg 2 Became full professor, 1964 On leave, Harvard University, 1966–1967 On leave, Massachusetts Institute of Technology, 1967–1969 Massachusetts Institute of Technology, 1969–1973, Professor of Physics Harvard University, 1973–1983, Higgins Professor of Physics On leave 1976–1977, as Visiting Professor of Physics, Stanford University Smithsonian Astrophysical Observatory, 1973-1983, Senior -
An Introduction to the Quark Model
An Introduction to the Quark Model Garth Huber Prairie Universities Physics Seminar Series, November, 2009. Particles in Atomic Physics • View of the particle world as of early 20th Century. • Particles found in atoms: –Electron – Nucleons: •Proton(nucleus of hydrogen) •Neutron(e.g. nucleus of helium – α-particle - has two protons and two neutrons) • Related particle mediating electromagnetic interactions between electrons and protons: Particle Electric charge Mass – Photon (light!) (x 1.6 10-19 C) (GeV=x 1.86 10-27 kg) e −1 0.0005 p +1 0.938 n 0 0.940 γ 0 0 Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada. 2 Early Evidence for Nucleon Internal Structure • Apply the Correspondence Principle to the Classical relation for q magnetic moment: µ = L 2m • Obtain for a point-like spin-½ particle of mass mp: qqeq⎛⎞⎛⎞ µ == =µ ⎜⎟ ⎜⎟ N 2222memepp⎝⎠ ⎝⎠ 2 Experimental values: µp=2.79 µN (p) µn= -1.91 µN (n) • Experimental values inconsistent with point-like assumption. • In particular, the neutron’s magnetic moment does not vanish, as expected for a point-like electrically neutral particle. This is unequivocal evidence that the neutron (and proton) has an internal structure involving a distribution of charges. Dr. Garth Huber, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada. 3 The Particle Zoo • Circa 1950, the first particle accelerators began to uncover many new particles. • Most of these particles are unstable and decay very quickly, and hence had not been seen in cosmic ray experiments. • Could all these particles be fundamental? Dr. Garth Huber, Dept. -
1 Quark Model of Hadrons
1 QUARK MODEL OF HADRONS 1 Quark model of hadrons 1.1 Symmetries and evidence for quarks 1 Hadrons as bound states of quarks – point-like spin- 2 objects, charged (‘coloured’) under the strong force. Baryons as qqq combinations. Mesons as qq¯ combinations. 1 Baryon number = 3 (N(q) − N(¯q)) and its conservation. You are not expected to know all of the names of the particles in the baryon and meson multiplets, but you are expected to know that such multiplets exist, and to be able to interpret them if presented with them. You should also know the quark contents of the simple light baryons and mesons (and their anti-particles): p = (uud) n = (udd) π0 = (mixture of uu¯ and dd¯) π+ = (ud¯) K0 = (ds¯) K+ = (us¯). and be able to work out others with some hints. P 1 + Lowest-lying baryons as L = 0 and J = 2 states of qqq. P 3 + Excited versions have L = 0 and J = 2 . Pauli exclusion and non existence of uuu, ddd, sss states in lowest lying multiplet. Lowest-lying mesons as qq¯0 states with L = 0 and J P = 0−. First excited levels (particles) with same quark content have L = 0 and J P = 1−. Ability to explain contents of these multiplets in terms of quarks. J/Ψ as a bound state of cc¯ Υ (upsilon) as a bound state of b¯b. Realization that these are hydrogenic-like states with suitable reduced mass (c.f. positronium), and subject to the strong force, so with energy levels paramaterized by αs rather than αEM Top is very heavy and decays before it can form hadrons, so no top hadrons exist. -
The Structure of Quarks and Leptons
The Structure of Quarks and Leptons They have been , considered the elementary particles ofmatter, but instead they may consist of still smaller entities confjned within a volume less than a thousandth the size of a proton by Haim Harari n the past 100 years the search for the the quark model that brought relief. In imagination: they suggest a way of I ultimate constituents of matter has the initial formulation of the model all building a complex world out of a few penetrated four layers of structure. hadrons could be explained as combina simple parts. All matter has been shown to consist of tions of just three kinds of quarks. atoms. The atom itself has been found Now it is the quarks and leptons Any theory of the elementary particles to have a dense nucleus surrounded by a themselves whose proliferation is begin fl. of matter must also take into ac cloud of electrons. The nucleus in turn ning to stir interest in the possibility of a count the forces that act between them has been broken down into its compo simpler-scheme. Whereas the original and the laws of nature that govern the nent protons and neutrons. More recent model had three quarks, there are now forces. Little would be gained in simpli ly it has become apparent that the pro thought to be at least 18, as well as six fying the spectrum of particles if the ton and the neutron are also composite leptons and a dozen other particles that number of forces and laws were thereby particles; they are made up of the small act as carriers of forces. -
Quantum Mechanics Quantum Chromodynamics (QCD)
Quantum Mechanics_quantum chromodynamics (QCD) In theoretical physics, quantum chromodynamics (QCD) is a theory ofstrong interactions, a fundamental forcedescribing the interactions between quarksand gluons which make up hadrons such as the proton, neutron and pion. QCD is a type of Quantum field theory called a non- abelian gauge theory with symmetry group SU(3). The QCD analog of electric charge is a property called 'color'. Gluons are the force carrier of the theory, like photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of Particle physics. A huge body of experimental evidence for QCD has been gathered over the years. QCD enjoys two peculiar properties: Confinement, which means that the force between quarks does not diminish as they are separated. Because of this, when you do split the quark the energy is enough to create another quark thus creating another quark pair; they are forever bound into hadrons such as theproton and the neutron or the pion and kaon. Although analytically unproven, confinement is widely believed to be true because it explains the consistent failure of free quark searches, and it is easy to demonstrate in lattice QCD. Asymptotic freedom, which means that in very high-energy reactions, quarks and gluons interact very weakly creating a quark–gluon plasma. This prediction of QCD was first discovered in the early 1970s by David Politzer and by Frank Wilczek and David Gross. For this work they were awarded the 2004 Nobel Prize in Physics. There is no known phase-transition line separating these two properties; confinement is dominant in low-energy scales but, as energy increases, asymptotic freedom becomes dominant. -
SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA
TOWARDS A UNIFIED THEORY - THREADS IN A TAPESTRY Nobel Lecture, 8 December, 1979 by SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA INTRODUCTION In 1956, when I began doing theoretical physics, the study of elementary particles was like a patchwork quilt. Electrodynamics, weak interactions, and strong interactions were clearly separate disciplines, separately taught and separately studied. There was no coherent theory that described them all. Developments such as the observation of parity violation, the successes of quantum electrodynamics, the discovery of hadron resonances and the appearance of strangeness were well-defined parts of the picture, but they could not be easily fitted together. Things have changed. Today we have what has been called a “standard theory” of elementary particle physics in which strong, weak, and electro- magnetic interactions all arise from a local symmetry principle. It is, in a sense, a complete and apparently correct theory, offering a qualitative description of all particle phenomena and precise quantitative predictions in many instances. There is no experimental data that contradicts the theory. In principle, if not yet in practice, all experimental data can be expressed in terms of a small number of “fundamental” masses and cou- pling constants. The theory we now have is an integral work of art: the patchwork quilt has become a tapestry. Tapestries are made by many artisans working together. The contribu- tions of separate workers cannot be discerned in the completed work, and the loose and false threads have been covered over. So it is in our picture of particle physics. Part of the picture is the unification of weak and electromagnetic interactions and the prediction of neutral currents, now being celebrated by the award of the Nobel Prize. -
PDF) of Partons I and J
TASI 2004 Lecture Notes on Higgs Boson Physics∗ Laura Reina1 1Physics Department, Florida State University, 315 Keen Building, Tallahassee, FL 32306-4350, USA E-mail: [email protected] Abstract In these lectures I briefly review the Higgs mechanism of spontaneous symmetry breaking and focus on the most relevant aspects of the phenomenology of the Standard Model and of the Minimal Supersymmetric Standard Model Higgs bosons at both hadron (Tevatron, Large Hadron Collider) and lepton (International Linear Collider) colliders. Some emphasis is put on the perturbative calculation of both Higgs boson branching ratios and production cross sections, including the most important radiative corrections. arXiv:hep-ph/0512377v1 30 Dec 2005 ∗ These lectures are dedicated to Filippo, who listened to them before he was born and behaved really well while I was writing these proceedings. 1 Contents I. Introduction 3 II. Theoretical framework: the Higgs mechanism and its consequences. 4 A. A brief introduction to the Higgs mechanism 5 B. The Higgs sector of the Standard Model 10 C. Theoretical constraints on the Standard Model Higgs bosonmass 13 1. Unitarity 14 2. Triviality and vacuum stability 16 3. Indirect bounds from electroweak precision measurements 17 4. Fine-tuning 22 D. The Higgs sector of the Minimal Supersymmetric Standard Model 24 1. About Two Higgs Doublet Models 25 2. The MSSM Higgs sector: introduction 27 3. MSSM Higgs boson couplings to electroweak gauge bosons 30 4. MSSM Higgs boson couplings to fermions 33 III. Phenomenology of the Higgs Boson 34 A. Standard Model Higgs boson decay branching ratios 34 1. General properties of radiative corrections to Higgs decays 37 + 2. -
Properties of Baryons in the Chiral Quark Model
Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teknologie licentiatavhandling Kungliga Tekniska Hogskolan¨ Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Licentiate Dissertation Theoretical Physics Department of Physics Royal Institute of Technology Stockholm, Sweden 1997 Typeset in LATEX Akademisk avhandling f¨or teknologie licentiatexamen (TeknL) inom ¨amnesomr˚adet teoretisk fysik. Scientific thesis for the degree of Licentiate of Engineering (Lic Eng) in the subject area of Theoretical Physics. TRITA-FYS-8026 ISSN 0280-316X ISRN KTH/FYS/TEO/R--97/9--SE ISBN 91-7170-211-3 c Tommy Ohlsson 1997 Printed in Sweden by KTH H¨ogskoletryckeriet, Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teoretisk fysik, Institutionen f¨or fysik, Kungliga Tekniska H¨ogskolan SE-100 44 Stockholm SWEDEN E-mail: [email protected] Abstract In this thesis, several properties of baryons are studied using the chiral quark model. The chiral quark model is a theory which can be used to describe low energy phenomena of baryons. In Paper 1, the chiral quark model is studied using wave functions with configuration mixing. This study is motivated by the fact that the chiral quark model cannot otherwise break the Coleman–Glashow sum-rule for the magnetic moments of the octet baryons, which is experimentally broken by about ten standard deviations. Configuration mixing with quark-diquark components is also able to reproduce the octet baryon magnetic moments very accurately. In Paper 2, the chiral quark model is used to calculate the decuplet baryon ++ magnetic moments. The values for the magnetic moments of the ∆ and Ω− are in good agreement with the experimental results. -
Nobel Prize for Physics, 1979
Nobel Prize for Physics, 1979 Abdus Sal am Physics' most prestigious accolade forces is a significant milestone in goes this year to Sheldon Glashow, the constant quest to describe as Abdus Salam and Steven Weinberg much as possible of the world for their work in elucidating the inter around us from a minimal set of actions of elementary particles, and initial ideas. in particular for the development of 'At first sight there may be little or the theory which unifies the electro no similarity between electromag magnetic and weak forces. netic effects and the phenomena This synthesis of two of the basic associated with weak interactions', forces of nature must be reckoned as wrote Sheldon Glashow in 1960. one of the crowning achievements 'Yet remarkable parallels emerge...' of a century which has already seen Both kinds of interactions affect the birth of both quantum mechanics leptons and hadrons; both appear to and relativity. be 'vector' interactions brought Electromagnetism and the weak about by the exchange of particles force might appear to have little to carrying unit spin and negative pari do with each other. Electromagne ty; both have their own universal tism is our everyday world — it holds coupling constant which governs the atoms together and produces light, strength of the interactions. while the weak force was for a long These vital clues led Glashow to time known only for the relatively propose an ambitious theory which obscure phenomenon of beta-decay attempted to unify the two forces. radioactivity. However there was one big difficul The successful unification of these ty, which Glashow admitted had to two apparently highly dissimilar be put to one side. -
Unitarity Constraints on Higgs Portals
SLAC-PUB-15822 Unitarity Constraints on Higgs Portals Devin G. E. Walker SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A. Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic Higgs portal. We show how partial wave unitarity places an upper bound on the mass of the mediator (or dark) Higgs when its mass is increased to be the largest scale in the effective theory. For models where the dark matter annihilates via fermion exchange, an upper bound is generated when unitarity breaks down around 8.5 TeV. Models where the dark matter annihilates via fermion and higgs boson exchange push the bound to 45.5 TeV. We also show that if dark matter obtains all of its mass from a new symmetry breaking scale that scale is also constrained. We improve these constraints by requiring perturbativity in the Higgs sector up to each unitarity bound. In this limit, the bounds on the dark symmetry breaking vev and the dark Higgs mass are now 2.4 and 3 TeV, respectively, when the dark matter annihilates via fermion exchange. When dark matter annihilates via fermion and higgs boson exchange, the bounds are now 12 and 14.2 TeV, respectively. Given the unitarity bounds, the available parameter space for Higgs portal dark matter annihilation is outlined. -
Modern Methods of Quantum Chromodynamics
Modern Methods of Quantum Chromodynamics Christian Schwinn Albert-Ludwigs-Universit¨atFreiburg, Physikalisches Institut D-79104 Freiburg, Germany Winter-Semester 2014/15 Draft: March 30, 2015 http://www.tep.physik.uni-freiburg.de/lectures/QCD-WS-14 2 Contents 1 Introduction 9 Hadrons and quarks . .9 QFT and QED . .9 QCD: theory of quarks and gluons . .9 QCD and LHC physics . 10 Multi-parton scattering amplitudes . 10 NLO calculations . 11 Remarks on the lecture . 11 I Parton Model and QCD 13 2 Quarks and colour 15 2.1 Hadrons and quarks . 15 Hadrons and the strong interactions . 15 Quark Model . 15 2.2 Parton Model . 16 Deep inelastic scattering . 16 Parton distribution functions . 18 2.3 Colour degree of freedom . 19 Postulate of colour quantum number . 19 Colour-SU(3).............................. 20 Confinement . 20 Evidence of colour: e+e− ! hadrons . 21 2.4 Towards QCD . 22 3 Basics of QFT and QED 25 3.1 Quantum numbers of relativistic particles . 25 3.1.1 Poincar´egroup . 26 3.1.2 Relativistic one-particle states . 27 3.2 Quantum fields . 32 3.2.1 Scalar fields . 32 3.2.2 Spinor fields . 32 3 4 CONTENTS Dirac spinors . 33 Massless spin one-half particles . 34 Spinor products . 35 Quantization . 35 3.2.3 Massless vector bosons . 35 Polarization vectors and gauge invariance . 36 3.3 QED . 37 3.4 Feynman rules . 39 3.4.1 S-matrix and Cross section . 39 S-matrix . 39 Poincar´einvariance of the S-matrix . 40 T -matrix and scattering amplitude . 41 Unitarity of the S-matrix . 41 Cross section .