Submission from Aquamarine Power Ltd

Total Page:16

File Type:pdf, Size:1020Kb

Submission from Aquamarine Power Ltd SUBMISSION FROM AQUAMARINE POWER LTD 1. Aquamarine Power Ltd Aquamarine Power Ltd is a leading marine energy company. We specialise in developing multiple technologies designed to deliver clean power and fresh water from ocean energy. Our goal is to deliver large-scale wave and tidal energy projects, using Aquamarine’s technology to help tackle climate change and global fresh water supplies. Based in Scotland, our engineering team brings unrivalled experience from the offshore wind, marine energy, and oil and gas industries. Aquamarine’s project development services support the identification and development of commercially viable marine energy sites. The result of a longstanding partnership with Queen’s University Belfast, the company’s first product is Oyster®, a simple, robust and reliable hydro-electric wave power converter. The device has been manufactured and is now ready for full-scale testing, prior to installation and grid-connection at the European Marine Energy Centre (EMEC) in Orkney next summer. The following commercial demonstrator will be the 2.4MW NeptuneTM tidal stream device. 2. Response to Key Consultation Questions We respond below to a number of the specific questions and key issues outlined in the terms of reference and call for evidence. We have answered the questions we feel impinge most on our company and the marine energy industry. 2.1 What type of future is needed in Scotland in terms of the production, distribution and more efficient use of energy, given the issues of price, security of supply and sustainable development? Scotland is uniquely placed to create and lead an export-oriented renewable energy industry. The products of this new industry will deliver sustainable economic growth and will include the following products. • Electricity – Exported via the National Grid to England and Wales, and via a Celtic, and eventually, European Supergrid to our nearest neighbours. • Technology – The opportunity for Scotland to be a world leader in the wind sector has passed; it must now focus on the marine sector. By supporting marine renewable technologies, Scotland will cultivate and champion world leaders in this pioneering industry; just as Denmark spawned industry leaders such as Vestas and Bonus in the wind sector. • Green Certificates – Originating in Scotland, Green Certificates will be sold on world markets. • Employment – The wind industry in Germany, Denmark and Spain currently provides 73,800, 21,000 and 35,000 jobs, respectively.1 The marine renewable industry in Scotland has the potential to create tens of thousands of jobs on a similar scale and will minimise unemployment resulting from the decline in the oil and gas industry. Two of the most critical issues of present times are: the security and affordability of energy supply; and action on climate change. In order to support sustainable economic growth over the long term, Scotland must focus on achieving self- sufficiency and international leadership in the renewable energy sector. Production and distribution of marine renewable energy will be key to achieving this. • Production - Production of electricity from renewable sources will move increasingly to the marine environment in the form of offshore wind, wave and tidal. A mix of “uncorrelated” resources will reduce the risk in the generation portfolio and reduce the risk-adjusted cost per MWh. • Distribution - Historically, electricity grids have been designed to carry power from a single large power station to the centres of load. A rethink of the electricity grid design needs to be undertaken, with priority given to the technical requirements of renewable resources. Flexible and lower cost connections need to be delivered. Development of the marine energy industry as a key part of a diverse renewable energy portfolio, supported by upgraded grid infrastructure, will enable Scotland to meet domestic demand and ensure security of supply and price. In addition, it will enable Scotland to meet crucial environmental targets, in support of international action on climate change and sustainable economic development. 2.2 How can this future be delivered in Scotland and how will we meet all the various targets and obligations? The following recommendations support a renewable energy mix for Scotland, but in particular focus on measures supporting the wave and tidal energy sector in which Aquamarine is involved. • A diverse renewable energy portfolio A mix of renewable energy sources should be the goal of Government (see Section 2.1). We are pleased with the targets set. A wide range of renewable will be necessary to sustainably meet energy demand over the long term or deliver security of supply. 1 Strategic Overview of the Wind Energy Sector, 2008, European Wind Energy Association (EWEA) According to a survey of Scotland’s renewable resource,2 the country’s total renewable electricity resource could supply over 10 times the domestic peak winter electricity demand. Such considerable resource evidences the potential for Scotland not only to meet its own energy demands but also to become a major renewable energy exporter. Marine energy has the capacity to provide a significant proportion of the energy mix, with Scotland hosting approximately 35,000 square kilometres of coastal waters3, providing 47% of the European marine energy resource. In order to capture this market, the marine energy industry initially requires Government support and investment (detailed below) to allow Scotland to build and secure its position as a global leader in the sector. The DBERR4 estimate of wave and tidal energy contributing less than 1% and 2%, respectively, to the energy mix by 2020 appears a pessimistic forecast providing little support to the sector and discouraging investment. • Skill transfer from the offshore oil and gas industry to the emerging offshore renewable industries of wind, wave and tidal Scotland’s oil and gas industry provides services and a 100,000 strong work force with valuable offshore skills and experience. As the North Sea oil and gas industry declines, the ability of Scotland’s oil and gas supply chain to apply its services in the emerging renewable industry will be key to sustaining Scotland’s socio-economic development. In order to encourage commercial success of the marine renewables industry, the Scottish Government should continue to support companies through Scottish Enterprise new business funding for management training, marketing and commercial development. Further, the reinstatement of the Marine Collaboration fund is also recommended to encourage collaboration between marine developers and the oil and gas sector. • Developing a streamlined consenting process for the commercial development of wave and tidal sites. The Scottish Government needs to encourage the various environmental, social and economic agencies to work together for sustainable development of the marine energy industry. This will necessarily involve agencies with potentially opposing polices working together resolve conflicting issues. These key stakeholder groups need to work together to develop a mutually acceptable policy on sustainable development of marine renewables industry in Scotland. In addition, clear guidelines and standards should be set for each renewable energy 2 Scotland’s Renewable Resource, Garrad Hassan, 2001 3 Preliminary Briefing of Renewables, delivered at the Saltire Prize Stakeholder Consultation, 13 August2008 4 UK Renewable Energy Strategy Consultation, DBERR, June 2008 type. Such action would improve the quality of applications from developers and help them to avoid unnecessary approval delays and associated costs. • Upgrading the domestic grid and delivering the Supergrid In terms of distribution, the grid (Scotland and UK wide) and Supergrid (links to Europe) offer the only true prospect of a channel to market. Without an effective grid system, there is no means of commercial supply and operation of thousands of MW of renewable energy. This prohibits Scotland’s economic development internationally and endangers domestic supply where other (external) power sources are able to compete using existing infrastructure. The grid system of the future should be able to accommodate both small-scale energy supplies from local community sources and large-scale decentralised renewables, such as wind, wave and tidal. Offshore wind, wave and tidal, by their nature, will feed into the periphery of the grid. As the grid was originally designed to take energy input from a centralised source, the current infrastructure is unsuitable. If Scotland is to meet its target of 50% renewable electricity by 2020, there is an urgent need to upgrade the existing grid system. These targets cannot be achieved by one singular, central source of renewable energy alone. • Effective, efficient grid planning Working with the regulators and developers, Planning Authorities should take responsibility for streamlining the consenting process both for new and upgraded grid infrastructure and for the development of renewable projects requiring grid access, ensuring efficiency and effectiveness of the consenting process to avoid unnecessary delays and costs. The prioritisation of power generation and grid reinforcements in the National Planning Framework 2 to provide domestic grid upgrades including Islands connections is essential in delivering a grid system to support renewables in Scotland. Additionally, it is imperative that the NPF2 includes development of a subsea Supergrid to ensure Scotland’s opportunity to become
Recommended publications
  • Lewis Wave Power Limited
    Lewis Wave Power Limited 40MW Oyster Wave Array North West Coast, Isle of Lewis Environmental Statement Volume 1: Non-Technical Summary March 2012 40MW Lewis Wave Array Environmental Statement 1. NON-TECHNICAL SUMMARY 1.1 Introduction This document provides a Non-Technical Summary (NTS) of the Environmental Statement (ES) produced in support of the consent application process for the North West Lewis Wave Array, hereafter known as the development. The ES is the formal report of an Environmental Impact Assessment (EIA) undertaken by Lewis Wave Power Limited (hereafter known as Lewis Wave Power) into the potential impacts of the construction, operation and eventual decommissioning of the development. 1.2 Lewis Wave Power Limited Lewis Wave Power is a wholly owned subsidiary of Edinburgh based Aquamarine Power Limited, the technology developer of the Oyster wave power technology, which captures energy from near shore waves and converts it into clean sustainable electricity. Aquamarine Power installed the first full scale Oyster wave energy convertor (WEC) at the European Marine Energy Centre (EMEC) in Orkney, which began producing power to the National Grid for the first time in November 2009. That device has withstood two winters in the harsh Atlantic waters off the coast of Orkney in northern Scotland. Aquamarine Power recently installed the first of three next-generation devices also at EMEC which will form the first wave array of its type anywhere in the world. 1.3 Project details The wave array development will have the capacity to provide 40 Megawatts (MW), enough energy to power up to 38,000 homes and will contribute to meeting the Scottish Government’s targets of providing the equivalent of 100% of Scotland’s electricity generation from renewable sources by 2020.
    [Show full text]
  • Aquamarine Power – Oyster* Biopower Systems – Biowave
    Wave Energy Converters (WECs) Aquamarine Power – Oyster* The Oyster is uniquely designed to harness wave energy in a near-shore environment. It is composed primarily of a simple mechanical hinged flap connected to the seabed at a depth of about 10 meters and is gravity moored. Each passing wave moves the flap, driving hydraulic pistons to deliver high pressure water via a pipeline to an onshore electrical turbine. AWS Ocean Energy – Archimedes Wave Swing™* The Archimedes Wave Swing is a seabed point-absorbing wave energy converter with a large air-filled cylinder that is submerged beneath the waves. As a wave crest approaches, the water pressure on the top of the cylinder increases and the upper part or 'floater' compresses the air within the cylinder to balance the pressures. The reverse happens as the wave trough passes and the cylinder expands. The relative movement between the floater and the fixed lower part is converted directly to electricity by means of a linear power take-off. BioPower Systems – bioWAVE™ The bioWAVE oscillating wave surge converter system is based on the swaying motion of sea plants in the presence of ocean waves. In extreme wave conditions, the device automatically ceases operation and assumes a safe position lying flat against the seabed. This eliminates exposure to extreme forces, allowing for light-weight designs. Centipod* The Centipod is a Wave Energy Conversion device currently under construction by Dehlsen Associates, LLC. It operates in water depths of 40-44m and uses a two point mooring system with four lines. Its methodology for wave energy conversion is similar to other devices.
    [Show full text]
  • Technology Feature: the Oyster 16
    ISSUE Technology Feature: The Oyster 16 April 2013 Featuring: Aquamarine Power In the latest edition of our newsletter, LRI interviewed Martin McAdam, CEO at Aquamarine Power. Their wave-powered energy converter - Oyster - is among the leading technologies in About Us the UK’s burgeoning marine energy sector. A commercial scale demonstration project is currently operational, and the sites for GreenTechEurope.com Aquamarine Power’s prospective wave farms have been secured (GTE) is a production of and fully permitted. The company is currently looking for London Research corporate equity investors to provide £30m to complete their International (LRI), a global commercialisation program. research and consulting firm with expertise in the Sooner than you think: utility scale marine energy The Oyster wave power device is a buoyant, hinged flap energy, environment, and Who is Aquamarine Power? which is attached to the seabed at depths of between 10 infrastructure sectors. GTE Aquamarine Power is an Edinburgh based wave and 15 metres, around half a kilometre from the shore. is a video-based energy technology and project developer which technology platform Oyster's hinged flap - which is almost entirely underwater conducts their R&D with Queen’s University Belfast - pitches backwards and forwards in the near-shore showcasing innovative and demonstrates their technology in the Orkney waves. The movement of the flap drives two hydraulic technologies from Europe. Islands, Scotland. Their unique approach to pistons which push high pressure water onshore via a developing both the technology and the project site The GTE Newsletter subsea pipeline to drive a conventional hydro-electric is aimed at easing the obstacles within the process turbine.
    [Show full text]
  • Surfing and the Future of Scotlands Seas
    Scottish Marine Recreational Resources: Surfing and the Future of Scotland’s Seas PREPARED 23 Jan 2013 Prepared by W. Watson The Scottish Surfing Federation January 2013 Contents Forward..................................................................................................................................................................................................................................................3 1) Understanding Changes in the Marine Environment.....................................................................................................................................4 1.1) What is RenewaBle Energy? ........................................................................................................................................................................4 1.2) So what is the scale of Scotland’s Renewable Industry? .................................................................................................................6 1.3) The Units of Power and Energy in layman’s terms............................................................................................................................6 1.4) Benchmarking Power CaPacities of existing Scottish Power SuPPlies .....................................................................................7 1.5) The History of Scotlands Renewables – The Hydro Schemes 1900 - 2000.............................................................................7 1.6) Onshore Wind 2000 - 2012..........................................................................................................................................................................8
    [Show full text]
  • The Economics of the Green Investment Bank: Costs and Benefits, Rationale and Value for Money
    The economics of the Green Investment Bank: costs and benefits, rationale and value for money Report prepared for The Department for Business, Innovation & Skills Final report October 2011 The economics of the Green Investment Bank: cost and benefits, rationale and value for money 2 Acknowledgements This report was commissioned by the Department of Business, Innovation and Skills (BIS). Vivid Economics would like to thank BIS staff for their practical support in the review of outputs throughout this project. We would like to thank McKinsey and Deloitte for their valuable assistance in delivering this project from start to finish. In addition, we would like to thank the Department of Energy and Climate Change (DECC), the Department for Environment, Food and Rural Affairs (Defra), the Committee on Climate Change (CCC), the Carbon Trust and Sustainable Development Capital LLP (SDCL), for their valuable support and advice at various stages of the research. We are grateful to the many individuals in the financial sector and the energy, waste, water, transport and environmental industries for sharing their insights with us. The contents of this report reflect the views of the authors and not those of BIS or any other party, and the authors take responsibility for any errors or omissions. An appropriate citation for this report is: Vivid Economics in association with McKinsey & Co, The economics of the Green Investment Bank: costs and benefits, rationale and value for money, report prepared for The Department for Business, Innovation & Skills, October 2011 The economics of the Green Investment Bank: cost and benefits, rationale and value for money 3 Executive Summary The UK Government is committed to achieving the transition to a green economy and delivering long-term sustainable growth.
    [Show full text]
  • Draft Energy Bill: Pre–Legislative Scrutiny
    House of Commons Energy and Climate Change Committee Draft Energy Bill: Pre–legislative Scrutiny First Report of Session 2012-13 Volume III Additional written evidence Ordered by the House of Commons to be published on 24 May, 12, 19 and 26 June, 3 July, and 10 July 2012 Published on Monday 23 July 2012 by authority of the House of Commons London: The Stationery Office Limited The Energy and Climate Change Committee The Energy and Climate Change Committee is appointed by the House of Commons to examine the expenditure, administration, and policy of the Department of Energy and Climate Change and associated public bodies. Current membership Mr Tim Yeo MP (Conservative, South Suffolk) (Chair) Dan Byles MP (Conservative, North Warwickshire) Barry Gardiner MP (Labour, Brent North) Ian Lavery MP (Labour, Wansbeck) Dr Phillip Lee MP (Conservative, Bracknell) Albert Owen MP (Labour, Ynys Môn) Christopher Pincher MP (Conservative, Tamworth) John Robertson MP (Labour, Glasgow North West) Laura Sandys MP (Conservative, South Thanet) Sir Robert Smith MP (Liberal Democrat, West Aberdeenshire and Kincardine) Dr Alan Whitehead MP (Labour, Southampton Test) The following members were also members of the committee during the parliament: Gemma Doyle MP (Labour/Co-operative, West Dunbartonshire) Tom Greatrex MP (Labour, Rutherglen and Hamilton West) Powers The Committee is one of the departmental select committees, the powers of which are set out in House of Commons Standing Orders, principally in SO No 152. These are available on the Internet via www.parliament.uk. Publication The Reports and evidence of the Committee are published by The Stationery Office by Order of the House.
    [Show full text]
  • Aquamarine Power Response
    Strengthening strategic and sustainability considerations in Ofgem’s decision making Aquamarine Power’s response 1. Introduction “With a quarter of the UK’s generating capacity shutting down over the next ten years as old coal and nuclear power stations close, more than £110bn in investment is needed to build the equivalent of 20 large power stations and upgrade the grid. In the longer term, by 2050, electricity demand is set to double, as we shift more transport and heating onto the electricity grid. Business as usual is therefore not an option.i” Department of Energy and Climate Change, 2010 The coming decades will see a radical shift in the way in which electricity is generated and how it is paid for, and we welcome this discussion paper. We believe marine energy – wave and tidal power – offers a potential new energy source which can make a significant contribution to the UK and global energy mix in the decades ahead. But we are concerned the current charging regime fails to take account of the particular economic challenges faced by these early stage technologies, and as a consequence there is a danger that wave and tidal energy will be ‘locked out’ of any future energy scenario. This would mean UK consumers would miss out on a new form of energy which has the potential to drive down consumer bills in the long term, and also that UK would miss out on a major economic opportunity to become a global leader in new technologies. As project Discovery stated, the lowest domestic fuel bills would be likely to be realised under the ‘Green Stimulus’ scenario in which the UK reaches its 2020 renewable energy targetii.
    [Show full text]
  • A Low Carbon Economy ‘
    A Low Carbon Economic Strategy for Scotland Scotland – A Low Carbon Society A Low Carbon Economic Strategy for Scotland Scotland – A Low Carbon Society The Scottish Government, Edinburgh, 2010 © Crown copyright 2010 ISBN: 978-0-7559-9759-6 The Scottish Government St Andrew’s House Edinburgh EH1 3DG Produced for the Scottish Government by APS Group Scotland DPPAS10931 (11/10) Published by the Scottish Government, November 2010 A Low Carbon Economy ‘.. as the world moves shakily into the economic recovery phase, I see investment in the green economy as a key to that general world recovery... Current economic difficulties should be a spur and not a hindrance to that effort... I see the current economic difficulties as a spur to getting this green economic revolution right.’ (The Rt. Hon Alex Salmond MSP, First Minister addressing the Low Carbon Investment Conference 28 September.) Contents Page Ministerial Foreword 4 Section 1 The Strategy 1.1 Towards a Low Carbon Economy 6 1.2 A Low Carbon Economic Strategy for Scotland 10 1.3 Strategic Objectives and Immediate Actions 20 Section 2 – Sector Focus 2.1 Transformation across the whole Economy 30 2.2 Transforming the Energy Sector 43 2.3 Transforming the Built Environment 58 2.4 Decarbonising Transport 69 2.5 Scotland’s Resources 78 Low Carbon Economic Indicators for Scotland 89 Ministerial Foreword On 22 March 2010, the Scottish Government published the discussion paper Towards a Low Carbon Economy, which outlined the Scottish Government’s plans to move towards a low carbon economy in Scotland, as part of the overarching Government Economic Strategy.
    [Show full text]
  • Industry Analysis: Wave Power Technology
    Industry Analysis: Wave Power Technology TABLE OF CONTENTS Table of Figures ........................................................................................................................................... 2 Table of Tables ............................................................................................................................................. 2 Executive Summary.................................................................................................................................... 2 Introduction ................................................................................................................................................. 4 R e p o r t S c o p e ......................................................................................................................................................... 4 Renewable Wave Energy Assumptions .......................................................................................................... 4 R e p o r t Structure ................................................................................................................................................... 5 Chapter 1: UK Wave Energy Market ................................................................................................. 6 Market Size and Growth ....................................................................................................................................... 6 Key Competitors ....................................................................................................................................................
    [Show full text]
  • No2nuclearpower 1 1. Sellafield
    No2NuclearPower No.59 February 2014 1. Sellafield - poor progress, missed targets, escalating costs, slipping deadlines and weak leadership 2. Plutonium – no clear strategy 3. European Commission State Aid Investigation 4. European Targets 5. Horizon – GDA 6. NuGen – an AP1000 in 4 years? 7. Day of the Jellyfish 8. NDA’s intermediate-level waste plans 9. Waste Transport 10. ECO disaster 11. Solar Prospects 12. Nuclear Innovation nuClear news No.59, February 2014 1 No2NuclearPower 1. Sellafield - poor progress, missed targets, escalating costs, slipping deadlines and weak leadership Nuclear Management Partners – the consortium overseeing the clean-up of Sellafield – should have their contract terminated if performance does not improve, says Margaret Hodge, Chair of the House of Commons Public Accounts Committee (PAC). The bill for cleaning up Sellafield has risen to more than £70bn, according to a report from the public accounts committee. A new report (1) from the Committee says progress has been poor, with missed targets, escalating costs, slipping deadlines and weak leadership. The MPs made a series of recommendations focusing on the role of Nuclear Management Partners (NMP). The report concluded that the consortium was to blame for many of the escalating costs and the MPs said they could not understand why the NDA extended the consortium's contract last October. (2) Damning criticism of the consortium was also revealed in a series of hostile letters written by John Clarke, head of the NDA. Mr Clarke accused Nuclear Management Partners (NMP) of undermining confidence and damaging the entire project’s reputation, as well as criticising Tom Zarges, the consortium chairman, of setting “unduly conservative” targets.
    [Show full text]
  • Developing the Marine Energy Sector in Scotland: a View from the Islands Thomas Neal Mcmillin University of Mississippi
    University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) 2014 Developing the Marine Energy Sector in Scotland: A View from the Islands Thomas Neal McMillin University of Mississippi. Sally McDonnell Barksdale Honors College Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the American Studies Commons Recommended Citation McMillin, Thomas Neal, "Developing the Marine Energy Sector in Scotland: A View from the Islands" (2014). Honors Theses. 912. https://egrove.olemiss.edu/hon_thesis/912 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. DEVELOPING THE MARINE ENERGY SECTOR IN SCOTLAND: A VIEW FROM THE ISLANDS _____________________ NEAL MCMILLIN DEVELOPING THE MARINE ENERGY SECTOR IN SCOTLAND: A VIEW FROM THE ISLANDS by Thomas Neal McMillin, Jr. A thesis submitted to the faculty of the University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford 2014 Approved by _________________________________ Advisor: Dr. Andy Harper _________________________________ Reader: Dr. Jay Watson _________________________________ Reader: Dr. John Winkle 2 ACKNOWLEDGEMENTS If you need an idea, you may be wise to take a hot shower. I conceived the genesis of this project during one of these. I realized that to apply for the Barksdale Award, I needed to focus on something which I had both experienced and cared about. From that thought, I realized that Scotland and water were my two topics to research.
    [Show full text]
  • Marine Energy Electrical Architecture
    Marine Energy Electrical Architecture Report 1: Landscape Map and Literature Review September 2015 Marine Energy Electrical Architecture PN000083-LRT-006 Document History Field Detail Report Title Marine Energy Electrical Architecture Report Sub-Title Report 1: Landscape Map and Literature Review Client/Funding CORE Status Public Project Reference PN000083 Document Reference PN000083-LRT-006 Prepared Revision Date Checked by Approved by Revision History by R0 April 2015 Alan Mason Stephanie Hay Rachel Hodges First Release August R1 Alan Mason Stephanie Hay Rachel Hodges Second Release 2015 Disclaimer: The information contained in this report is for general information and is provided by TNEI. Whilst we endeavour to keep the information up to date and correct, neither ORE Catapult nor TNEI make any representations or warranties of any kind, express, or implied about the completeness, accuracy or reliability of the information and related graphics. Any reliance you place on this information is at your own risk and in no event shall ORE Catapult or TNEI be held liable for any loss, damage including without limitation indirect or consequential damage or any loss or damage whatsoever arising from reliance on same. ORE Catapult Marine Energy Electrical Architecture PN000083-LRT-006 Contents 1 Executive summary ................................................................................................ 5 2 Introduction............................................................................................................. 8 3 MEC Overview......................................................................................................
    [Show full text]