Review of Wave Energy Technologies and the Necessary Power-Equipment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lewis Wave Power Limited
Lewis Wave Power Limited 40MW Oyster Wave Array North West Coast, Isle of Lewis Environmental Statement Volume 1: Non-Technical Summary March 2012 40MW Lewis Wave Array Environmental Statement 1. NON-TECHNICAL SUMMARY 1.1 Introduction This document provides a Non-Technical Summary (NTS) of the Environmental Statement (ES) produced in support of the consent application process for the North West Lewis Wave Array, hereafter known as the development. The ES is the formal report of an Environmental Impact Assessment (EIA) undertaken by Lewis Wave Power Limited (hereafter known as Lewis Wave Power) into the potential impacts of the construction, operation and eventual decommissioning of the development. 1.2 Lewis Wave Power Limited Lewis Wave Power is a wholly owned subsidiary of Edinburgh based Aquamarine Power Limited, the technology developer of the Oyster wave power technology, which captures energy from near shore waves and converts it into clean sustainable electricity. Aquamarine Power installed the first full scale Oyster wave energy convertor (WEC) at the European Marine Energy Centre (EMEC) in Orkney, which began producing power to the National Grid for the first time in November 2009. That device has withstood two winters in the harsh Atlantic waters off the coast of Orkney in northern Scotland. Aquamarine Power recently installed the first of three next-generation devices also at EMEC which will form the first wave array of its type anywhere in the world. 1.3 Project details The wave array development will have the capacity to provide 40 Megawatts (MW), enough energy to power up to 38,000 homes and will contribute to meeting the Scottish Government’s targets of providing the equivalent of 100% of Scotland’s electricity generation from renewable sources by 2020. -
Aquamarine Power – Oyster* Biopower Systems – Biowave
Wave Energy Converters (WECs) Aquamarine Power – Oyster* The Oyster is uniquely designed to harness wave energy in a near-shore environment. It is composed primarily of a simple mechanical hinged flap connected to the seabed at a depth of about 10 meters and is gravity moored. Each passing wave moves the flap, driving hydraulic pistons to deliver high pressure water via a pipeline to an onshore electrical turbine. AWS Ocean Energy – Archimedes Wave Swing™* The Archimedes Wave Swing is a seabed point-absorbing wave energy converter with a large air-filled cylinder that is submerged beneath the waves. As a wave crest approaches, the water pressure on the top of the cylinder increases and the upper part or 'floater' compresses the air within the cylinder to balance the pressures. The reverse happens as the wave trough passes and the cylinder expands. The relative movement between the floater and the fixed lower part is converted directly to electricity by means of a linear power take-off. BioPower Systems – bioWAVE™ The bioWAVE oscillating wave surge converter system is based on the swaying motion of sea plants in the presence of ocean waves. In extreme wave conditions, the device automatically ceases operation and assumes a safe position lying flat against the seabed. This eliminates exposure to extreme forces, allowing for light-weight designs. Centipod* The Centipod is a Wave Energy Conversion device currently under construction by Dehlsen Associates, LLC. It operates in water depths of 40-44m and uses a two point mooring system with four lines. Its methodology for wave energy conversion is similar to other devices. -
Technology Feature: the Oyster 16
ISSUE Technology Feature: The Oyster 16 April 2013 Featuring: Aquamarine Power In the latest edition of our newsletter, LRI interviewed Martin McAdam, CEO at Aquamarine Power. Their wave-powered energy converter - Oyster - is among the leading technologies in About Us the UK’s burgeoning marine energy sector. A commercial scale demonstration project is currently operational, and the sites for GreenTechEurope.com Aquamarine Power’s prospective wave farms have been secured (GTE) is a production of and fully permitted. The company is currently looking for London Research corporate equity investors to provide £30m to complete their International (LRI), a global commercialisation program. research and consulting firm with expertise in the Sooner than you think: utility scale marine energy The Oyster wave power device is a buoyant, hinged flap energy, environment, and Who is Aquamarine Power? which is attached to the seabed at depths of between 10 infrastructure sectors. GTE Aquamarine Power is an Edinburgh based wave and 15 metres, around half a kilometre from the shore. is a video-based energy technology and project developer which technology platform Oyster's hinged flap - which is almost entirely underwater conducts their R&D with Queen’s University Belfast - pitches backwards and forwards in the near-shore showcasing innovative and demonstrates their technology in the Orkney waves. The movement of the flap drives two hydraulic technologies from Europe. Islands, Scotland. Their unique approach to pistons which push high pressure water onshore via a developing both the technology and the project site The GTE Newsletter subsea pipeline to drive a conventional hydro-electric is aimed at easing the obstacles within the process turbine. -
The Economics of the Green Investment Bank: Costs and Benefits, Rationale and Value for Money
The economics of the Green Investment Bank: costs and benefits, rationale and value for money Report prepared for The Department for Business, Innovation & Skills Final report October 2011 The economics of the Green Investment Bank: cost and benefits, rationale and value for money 2 Acknowledgements This report was commissioned by the Department of Business, Innovation and Skills (BIS). Vivid Economics would like to thank BIS staff for their practical support in the review of outputs throughout this project. We would like to thank McKinsey and Deloitte for their valuable assistance in delivering this project from start to finish. In addition, we would like to thank the Department of Energy and Climate Change (DECC), the Department for Environment, Food and Rural Affairs (Defra), the Committee on Climate Change (CCC), the Carbon Trust and Sustainable Development Capital LLP (SDCL), for their valuable support and advice at various stages of the research. We are grateful to the many individuals in the financial sector and the energy, waste, water, transport and environmental industries for sharing their insights with us. The contents of this report reflect the views of the authors and not those of BIS or any other party, and the authors take responsibility for any errors or omissions. An appropriate citation for this report is: Vivid Economics in association with McKinsey & Co, The economics of the Green Investment Bank: costs and benefits, rationale and value for money, report prepared for The Department for Business, Innovation & Skills, October 2011 The economics of the Green Investment Bank: cost and benefits, rationale and value for money 3 Executive Summary The UK Government is committed to achieving the transition to a green economy and delivering long-term sustainable growth. -
Wave Energy Propulsion for Pure Car and Truck Carriers (Pctcs)
Wave Energy Propulsion for Pure Car and Truck Carriers (PCTCs) Master thesis by KTH Centre for Naval Architecture Ludvig af Klinteberg Supervisor: Mikael Huss, Wallenius Marine Examiner: Anders Ros´en,KTH Centre for Naval Architecture Stockholm, 2009 Abstract Wave Energy Propulsion for Pure Car and Truck Carriers (PCTC's) The development of ocean wave energy technology has in recent years seen a revival due to increased climate concerns and interest in sustainable en- ergy. This thesis investigates whether ocean wave energy could also be used for propulsion of commercial ships, with Pure Car and Truck Carriers (PCTC's) being the model ship type used. Based on current wave energy research four technologies are selected as candidates for wave energy propul- sion: bow overtopping, thrust generating foils, moving multi-point absorber and turbine-fitted anti-roll tanks. Analyses of the selected technologies indicate that the generated propulsive power does the overcome the added resistance from the system at the ship design speed and size used in the study. Conclusions are that further wave energy propulsion research should focus on systems for ships that are slower and smaller than current PCTC's. V˚agenergiframdrivningav biltransportfartyg (PCTC's) Utvecklingen av v˚agenergiteknikhar p˚asenare ˚arf˚attett uppsving i sam- band med ¨okande klimatoro och intresse f¨orf¨ornyelsebar energi. Detta exam- ensarbete utreder huruvida v˚agenergi¨aven skulle kunna anv¨andastill fram- drivning av kommersiella fartyg, och anv¨ander moderna biltransportfartyg (PCTC's - Pure Car and Truck Carriers) som fartygstyp f¨orutredningen. Med utg˚angspunkti aktuell v˚agenergiforskningtas fyra potentiella tekniker f¨orv˚agenergiframdrivning fram: "overtopping" i f¨oren,passiva fenor, "mov- ing multi-point absorber" samt antirullningstankar med turbiner. -
Draft Energy Bill: Pre–Legislative Scrutiny
House of Commons Energy and Climate Change Committee Draft Energy Bill: Pre–legislative Scrutiny First Report of Session 2012-13 Volume III Additional written evidence Ordered by the House of Commons to be published on 24 May, 12, 19 and 26 June, 3 July, and 10 July 2012 Published on Monday 23 July 2012 by authority of the House of Commons London: The Stationery Office Limited The Energy and Climate Change Committee The Energy and Climate Change Committee is appointed by the House of Commons to examine the expenditure, administration, and policy of the Department of Energy and Climate Change and associated public bodies. Current membership Mr Tim Yeo MP (Conservative, South Suffolk) (Chair) Dan Byles MP (Conservative, North Warwickshire) Barry Gardiner MP (Labour, Brent North) Ian Lavery MP (Labour, Wansbeck) Dr Phillip Lee MP (Conservative, Bracknell) Albert Owen MP (Labour, Ynys Môn) Christopher Pincher MP (Conservative, Tamworth) John Robertson MP (Labour, Glasgow North West) Laura Sandys MP (Conservative, South Thanet) Sir Robert Smith MP (Liberal Democrat, West Aberdeenshire and Kincardine) Dr Alan Whitehead MP (Labour, Southampton Test) The following members were also members of the committee during the parliament: Gemma Doyle MP (Labour/Co-operative, West Dunbartonshire) Tom Greatrex MP (Labour, Rutherglen and Hamilton West) Powers The Committee is one of the departmental select committees, the powers of which are set out in House of Commons Standing Orders, principally in SO No 152. These are available on the Internet via www.parliament.uk. Publication The Reports and evidence of the Committee are published by The Stationery Office by Order of the House. -
Wave Hub Appendix N to the Environmental Statement
South West of England Regional Development Agency Wave Hub Appendix N to the Environmental Statement June 2006 Report No: 2006R001 South West Wave Hub Hayle, Cornwall Archaeological assessment Historic Environment Service (Projects) Cornwall County Council A Report for Halcrow South West Wave Hub, Hayle, Cornwall Archaeological assessment Kevin Camidge Dip Arch, MIFA Charles Johns BA, MIFA Philip Rees, FGS, C.Geol Bryn Perry Tapper, BA April 2006 Report No: 2006R001 Historic Environment Service, Environment and Heritage, Cornwall County Council Kennall Building, Old County Hall, Station Road, Truro, Cornwall, TR1 3AY tel (01872) 323603 fax (01872) 323811 E-mail [email protected] www.cornwall.gov.uk 3 Acknowledgements This study was commissioned by Halcrow and carried out by the projects team of the Historic Environment Service (formerly Cornwall Archaeological Unit), Environment and Heritage, Cornwall County Council in partnership with marine consultants Kevin Camidge and Phillip Rees. Help with the historical research was provided by the Cornish Studies Library, Redruth, Jonathan Holmes and Jeremy Rice of Penlee House Museum, Penzance; Angela Broome of the Royal Institution of Cornwall, Truro and Guy Hannaford of the United Kingdom Hydrographic Office, Taunton. The drawing of the medieval carved slate from Crane Godrevy (Fig 43) is reproduced courtesy of Charles Thomas. Within the Historic Environment Service, the Project Manager was Charles Johns, who also undertook the terrestrial assessment and walkover survey. Bryn Perry Tapper undertook the GIS mapping, computer generated models and illustrations. Marine consultants for the project were Kevin Camidge, who interpreted and reported on the marine geophysical survey results and Phillip Rees who provided valuable advice. -
Aquamarine Power Response
Strengthening strategic and sustainability considerations in Ofgem’s decision making Aquamarine Power’s response 1. Introduction “With a quarter of the UK’s generating capacity shutting down over the next ten years as old coal and nuclear power stations close, more than £110bn in investment is needed to build the equivalent of 20 large power stations and upgrade the grid. In the longer term, by 2050, electricity demand is set to double, as we shift more transport and heating onto the electricity grid. Business as usual is therefore not an option.i” Department of Energy and Climate Change, 2010 The coming decades will see a radical shift in the way in which electricity is generated and how it is paid for, and we welcome this discussion paper. We believe marine energy – wave and tidal power – offers a potential new energy source which can make a significant contribution to the UK and global energy mix in the decades ahead. But we are concerned the current charging regime fails to take account of the particular economic challenges faced by these early stage technologies, and as a consequence there is a danger that wave and tidal energy will be ‘locked out’ of any future energy scenario. This would mean UK consumers would miss out on a new form of energy which has the potential to drive down consumer bills in the long term, and also that UK would miss out on a major economic opportunity to become a global leader in new technologies. As project Discovery stated, the lowest domestic fuel bills would be likely to be realised under the ‘Green Stimulus’ scenario in which the UK reaches its 2020 renewable energy targetii. -
Renewable Energy Progress Report: South West 2012 Annual Survey 3 Contents Foreword
1 The south west now generates around 394 GWh of renewable electricity Renewable Energy from wind each year, which accounts for 28 per cent of renewable electricity in the south west, and 1.5 per cent of Progress Report: our electricity demand South West 2012 Annual Survey Renewable Energy Progress Report: South West 2012 Annual Survey 3 Contents Foreword Foreword 3 Last year global investment in renewable Renewable electricity 4 energy reached £165 billion – on par with Renewable heat 8 fossil fuel investment. The low-carbon Low-carbon economy 12 energy revolution is underway. R&D and technology development 14 This report uses the south west of England as a ‘test bed’ to 3. Some of our elected representatives are misreading the Regen SW’s advisory services 16 look in more detail at what is powering this revolution. It sets public mood: local opinion polls, as well as our experience out the excellent renewable energy resources, the progress we at community events, show a strong and consistent majority Case studies 17 are making in harnessing them and the lessons we can draw for supportive of all renewables, based on a common sense the national Renewable Energy Roadmap to increase the speed view that in an uncertain world we should make the most of Anaerobic digestion and sewage gas 18 of deployment and job creation. our local energy resources. The past year in the south west has seen record growth in 4. We need all renewables: small, medium and large: solar PV Biomass 20 renewable electricity from 218 MW to over 520 MW and has dominated this year’s figures in the south west, but consistent growth in renewable heat. -
Towards Integration of Low Carbon Energy and Biodiversity Policies
Towards integration of low carbon energy and biodiversity policies An assessment of impacts of low carbon energy scenarios on biodiversity in the UK and abroad and an assessment of a framework for determining ILUC impacts based on UK bio-energy demand scenarios SUPPORTING DOCUMENT – LITERATURE REVIEW OF IMPACTS ON BIODIVERSITY Defra 29 March 2013 In collaboration with: Supporting document – Literature review on impacts on biodiversity Document information CLIENT Defra REPORT TITLE Supporting document – Literature review of impacts on biodiversity PROJECT NAME Towards integration of low carbon energy and biodiversity policies PROJECT CODE WC1012 PROJECT TEAM BIO Intelligence Service, IEEP, CEH PROJECT OFFICER Mr. Andy Williams, Defra Mrs. Helen Pontier, Defra DATE 29 March 2013 AUTHORS Mr. Shailendra Mudgal, Bio Intelligence Service Ms. Sandra Berman, Bio Intelligence Service Dr. Adrian Tan, Bio Intelligence Service Ms. Sarah Lockwood, Bio Intelligence Service Dr. Anne Turbé, Bio Intelligence Service Dr. Graham Tucker, IEEP Mr. Andrew J. Mac Conville, IEEP Ms. Bettina Kretschmer, IEEP Dr. David Howard, CEH KEY CONTACTS Sébastien Soleille [email protected] Or Constance Von Briskorn [email protected] DISCLAIMER The project team does not accept any liability for any direct or indirect damage resulting from the use of this report or its content. This report contains the results of research by the authors and is not to be perceived as the opinion of Defra. Photo credit: cover @ Per Ola Wiberg ©BIO Intelligence Service 2013 2 | Towards -
No2nuclearpower 1 1. Sellafield
No2NuclearPower No.59 February 2014 1. Sellafield - poor progress, missed targets, escalating costs, slipping deadlines and weak leadership 2. Plutonium – no clear strategy 3. European Commission State Aid Investigation 4. European Targets 5. Horizon – GDA 6. NuGen – an AP1000 in 4 years? 7. Day of the Jellyfish 8. NDA’s intermediate-level waste plans 9. Waste Transport 10. ECO disaster 11. Solar Prospects 12. Nuclear Innovation nuClear news No.59, February 2014 1 No2NuclearPower 1. Sellafield - poor progress, missed targets, escalating costs, slipping deadlines and weak leadership Nuclear Management Partners – the consortium overseeing the clean-up of Sellafield – should have their contract terminated if performance does not improve, says Margaret Hodge, Chair of the House of Commons Public Accounts Committee (PAC). The bill for cleaning up Sellafield has risen to more than £70bn, according to a report from the public accounts committee. A new report (1) from the Committee says progress has been poor, with missed targets, escalating costs, slipping deadlines and weak leadership. The MPs made a series of recommendations focusing on the role of Nuclear Management Partners (NMP). The report concluded that the consortium was to blame for many of the escalating costs and the MPs said they could not understand why the NDA extended the consortium's contract last October. (2) Damning criticism of the consortium was also revealed in a series of hostile letters written by John Clarke, head of the NDA. Mr Clarke accused Nuclear Management Partners (NMP) of undermining confidence and damaging the entire project’s reputation, as well as criticising Tom Zarges, the consortium chairman, of setting “unduly conservative” targets. -
Developing the Marine Energy Sector in Scotland: a View from the Islands Thomas Neal Mcmillin University of Mississippi
University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) 2014 Developing the Marine Energy Sector in Scotland: A View from the Islands Thomas Neal McMillin University of Mississippi. Sally McDonnell Barksdale Honors College Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the American Studies Commons Recommended Citation McMillin, Thomas Neal, "Developing the Marine Energy Sector in Scotland: A View from the Islands" (2014). Honors Theses. 912. https://egrove.olemiss.edu/hon_thesis/912 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. DEVELOPING THE MARINE ENERGY SECTOR IN SCOTLAND: A VIEW FROM THE ISLANDS _____________________ NEAL MCMILLIN DEVELOPING THE MARINE ENERGY SECTOR IN SCOTLAND: A VIEW FROM THE ISLANDS by Thomas Neal McMillin, Jr. A thesis submitted to the faculty of the University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford 2014 Approved by _________________________________ Advisor: Dr. Andy Harper _________________________________ Reader: Dr. Jay Watson _________________________________ Reader: Dr. John Winkle 2 ACKNOWLEDGEMENTS If you need an idea, you may be wise to take a hot shower. I conceived the genesis of this project during one of these. I realized that to apply for the Barksdale Award, I needed to focus on something which I had both experienced and cared about. From that thought, I realized that Scotland and water were my two topics to research.