Late Miocene Chondrichthyans from Lago Bayano, Panama: Functional Diversity, Environment and Biogeography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tiger Shark (Galeocerdo Cuvier) on the East Coast of Australia
The biology and ecology of the tiger shark (Galeocerdo cuvier) on the east coast of Australia. Bonnie Jane Holmes BSc (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Biological Sciences ABSTRACT The tiger shark (Galeocerdo cuvier) (Péron and Lesueur 1822) is the largest of the carcharhinids, with a circumglobal distribution in both tropical and warm temperate coastal and pelagic waters. In the western Pacific, G. cuvier movements are wide-ranging, encompassing the east coast of Australia and south Pacific Islands. Throughout the region, G. cuvier is exposed to a range of commercial, recreational, artisanal and illegal foreign fishery impacts, as both a target and by-product species. Listed as ‘near threatened’ on the International Union for Conservation of Nature (IUCN) Red List, suitable long term species-specific catch, catch rate and biological data are seldom available for large shark species like G. cuvier, particularly where historical commercial fishery logbook reporting has been poor. Shark control programs targeting large sharks along Australia’s east coast have been in operation for over 60 years, using relatively standardised fishing gear in nearshore waters all year round, with historical catch and effort data recorded by shark contractors. Historical catch, catch rate and biological data collected through the Queensland Shark Control Program (QSCP) since 1993 were investigated, which revealed significant declines (p < 0.05) in catch rates of G. cuvier at some tropical and all sub-tropical locations along the Queensland coast. Significant temporal declines in the average size of G. cuvier also occurred at four of the nine locations analysed (p < 0.05), which could be indicative of fishing reducing abundance in these areas. -
Episodes 149 September 2009 Published by the International Union of Geological Sciences Vol.32, No.3
Contents Episodes 149 September 2009 Published by the International Union of Geological Sciences Vol.32, No.3 Editorial 150 IUGS: 2008-2009 Status Report by Alberto Riccardi Articles 152 The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Middle Miocene) by F.J. Hilgen, H.A. Abels, S. Iaccarino, W. Krijgsman, I. Raffi, R. Sprovieri, E. Turco and W.J. Zachariasse 167 Using carbon, hydrogen and helium isotopes to unravel the origin of hydrocarbons in the Wujiaweizi area of the Songliao Basin, China by Zhijun Jin, Liuping Zhang, Yang Wang, Yongqiang Cui and Katherine Milla 177 Geoconservation of Springs in Poland by Maria Bascik, Wojciech Chelmicki and Jan Urban 186 Worldwide outlook of geology journals: Challenges in South America by Susana E. Damborenea 194 The 20th International Geological Congress, Mexico (1956) by Luis Felipe Mazadiego Martínez and Octavio Puche Riart English translation by John Stevenson Conference Reports 208 The Third and Final Workshop of IGCP-524: Continent-Island Arc Collisions: How Anomalous is the Macquarie Arc? 210 Pre-congress Meeting of the Fifth Conference of the African Association of Women in Geosciences entitled “Women and Geosciences for Peace”. 212 World Summit on Ancient Microfossils. 214 News from the Geological Society of Africa. Book Reviews 216 The Geology of India. 217 Reservoir Geomechanics. 218 Calendar Cover The Ras il Pellegrin section on Malta. The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Miocene) is now formally defined at the boundary between the more indurated yellowish limestones of the Globigerina Limestone Formation at the base of the section and the softer greyish marls and clays of the Blue Clay Formation. -
LATE MIOCENE FISHES of the CACHE VALLEY MEMBER, SALT LAKE FORMATION, UTAH and IDAHO By
LATE MIOCENE FISHES OF THE CACHE VALLEY MEMBER, SALT LAKE FORMATION, UTAH AND IDAHO by PATRICK H. MCCLELLAN AND GERALD R. SMITH MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, 208 Ann Arbor, December 17, 2020 ISSN 0076-8405 P U B L I C A T I O N S O F T H E MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN NO. 208 GERALD SMITH, Editor The publications of the Museum of Zoology, The University of Michigan, consist primarily of two series—the Miscellaneous Publications and the Occasional Papers. Both series were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. Occasionally the Museum publishes contributions outside of these series. Beginning in 1990 these are titled Special Publications and Circulars and each is sequentially numbered. All submitted manuscripts to any of the Museum’s publications receive external peer review. The Occasional Papers, begun in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and individuals on the mailing list for the series. The Miscellaneous Publications, initiated in 1916, include monographic studies, papers on field and museum techniques, and other contributions not within the scope of the Occasional Papers, and are published separately. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Mammals, Birds, Reptiles and Amphibians, Fishes, I nsects, Mollusks, and other topics is available. -
Tectono-Sedimentary Evolution of the Cenozoic Basins in the Eastern External Betic Zone (SE Spain)
geosciences Review Tectono-Sedimentary Evolution of the Cenozoic Basins in the Eastern External Betic Zone (SE Spain) Manuel Martín-Martín 1,* , Francesco Guerrera 2 and Mario Tramontana 3 1 Departamento de Ciencias de la Tierra y Medio Ambiente, University of Alicante, 03080 Alicante, Spain 2 Formerly belonged to the Dipartimento di Scienze della Terra, della Vita e dell’Ambiente (DiSTeVA), Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy; [email protected] 3 Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy; [email protected] * Correspondence: [email protected] Received: 14 September 2020; Accepted: 28 September 2020; Published: 3 October 2020 Abstract: Four main unconformities (1–4) were recognized in the sedimentary record of the Cenozoic basins of the eastern External Betic Zone (SE, Spain). They are located at different stratigraphic levels, as follows: (1) Cretaceous-Paleogene boundary, even if this unconformity was also recorded at the early Paleocene (Murcia sector) and early Eocene (Alicante sector), (2) Eocene-Oligocene boundary, quite synchronous, in the whole considered area, (3) early Burdigalian, quite synchronous (recognized in the Murcia sector) and (4) Middle Tortonian (recognized in Murcia and Alicante sectors). These unconformities correspond to stratigraphic gaps of different temporal extensions and with different controls (tectonic or eustatic), which allowed recognizing minor sedimentary cycles in the Paleocene–Miocene time span. The Cenozoic marine sedimentation started over the oldest unconformity (i.e., the principal one), above the Mesozoic marine deposits. Paleocene-Eocene sedimentation shows numerous tectofacies (such as: turbidites, slumps, olistostromes, mega-olistostromes and pillow-beds) interpreted as related to an early, blind and deep-seated tectonic activity, acting in the more internal subdomains of the External Betic Zone as a result of the geodynamic processes related to the evolution of the westernmost branch of the Tethys. -
Late Neogene Chronology: New Perspectives in High-Resolution Stratigraphy
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Columbia University Academic Commons Late Neogene chronology: New perspectives in high-resolution stratigraphy W. A. Berggren Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 F. J. Hilgen Institute of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands C. G. Langereis } D. V. Kent Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964 J. D. Obradovich Isotope Geology Branch, U.S. Geological Survey, Denver, Colorado 80225 Isabella Raffi Facolta di Scienze MM.FF.NN, Universita ‘‘G. D’Annunzio’’, ‘‘Chieti’’, Italy M. E. Raymo Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 N. J. Shackleton Godwin Laboratory of Quaternary Research, Free School Lane, Cambridge University, Cambridge CB2 3RS, United Kingdom ABSTRACT (Calabria, Italy), is located near the top of working group with the task of investigat- the Olduvai (C2n) Magnetic Polarity Sub- ing and resolving the age disagreements in We present an integrated geochronology chronozone with an estimated age of 1.81 the then-nascent late Neogene chronologic for late Neogene time (Pliocene, Pleisto- Ma. The 13 calcareous nannoplankton schemes being developed by means of as- cene, and Holocene Epochs) based on an and 48 planktonic foraminiferal datum tronomical/climatic proxies (Hilgen, 1987; analysis of data from stable isotopes, mag- events for the Pliocene, and 12 calcareous Hilgen and Langereis, 1988, 1989; Shackle- netostratigraphy, radiochronology, and cal- nannoplankton and 10 planktonic foram- ton et al., 1990) and the classical radiometric careous plankton biostratigraphy. -
A Small Cichlid Species Flock from the Upper Miocene (9–10 MYA)
Hydrobiologia https://doi.org/10.1007/s10750-020-04358-z (0123456789().,-volV)(0123456789().,-volV) ADVANCES IN CICHLID RESEARCH IV A small cichlid species flock from the Upper Miocene (9–10 MYA) of Central Kenya Melanie Altner . Bettina Reichenbacher Received: 22 March 2020 / Revised: 16 June 2020 / Accepted: 13 July 2020 Ó The Author(s) 2020 Abstract Fossil cichlids from East Africa offer indicate that they represent an ancient small species unique insights into the evolutionary history and flock. Possible modern analogues of palaeolake Waril ancient diversity of the family on the African conti- and its species flock are discussed. The three species nent. Here we present three fossil species of the extinct of Baringochromis may have begun to subdivide haplotilapiine cichlid Baringochromis gen. nov. from their initial habitat by trophic differentiation. Possible the upper Miocene of the palaeolake Waril in Central sources of food could have been plant remains and Kenya, based on the analysis of a total of 78 articulated insects, as their fossilized remains are known from the skeletons. Baringochromis senutae sp. nov., B. same place where Baringochromis was found. sonyii sp. nov. and B. tallamae sp. nov. are super- ficially similar, but differ from each other in oral-tooth Keywords Cichlid fossils Á Pseudocrenilabrinae Á dentition and morphometric characters related to the Palaeolake Á Small species flock Á Late Miocene head, dorsal fin base and body depth. These findings Guest editors: S. Koblmu¨ller, R. C. Albertson, M. J. Genner, Introduction K. M. Sefc & T. Takahashi / Advances in Cichlid Research IV: Behavior, Ecology and Evolutionary Biology. The tropical freshwater fish family Cichlidae and its Electronic supplementary material The online version of estimated 2285 species is famous for its high degree of this article (https://doi.org/10.1007/s10750-020-04358-z) con- phenotypic diversity, trophic adaptations and special- tains supplementary material, which is available to authorized users. -
Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation. -
Copyrighted Material
06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago). -
Galeocerdo Cuvier (Tiger Shark) Family: Carcharhinidae (Requiem Sharks) Order: Carcharhiniformes (Ground Sharks) Class: Chondrichthyes (Carlilaginous Fish)
UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Galeocerdo cuvier (Tiger Shark) Family: Carcharhinidae (Requiem Sharks) Order: Carcharhiniformes (Ground Sharks) Class: Chondrichthyes (Carlilaginous Fish) Fig. 1. Tiger shark, Galeocerdo cuvier. [https://worldsbestdives.com/critter-feature-tiger-shark/, downloaded 1 April 2015] TRAITS. Tiger sharks are massive, blunt nosed predators identified as such due to their grey to black tiger-like stripes (Fig. 1). Young tiger sharks exhibit spots thus were previously termed leopard sharks. Large dark eyes. Tiger sharks have distinct tooth shape (Fig. 2), their serrated teeth have finely saw-like ends and thus are sharp with its teeth size being equal on both of its jaws (Castro, 2011). Upper lobe of caudal fin is longer than its lower. Broad based first dorsal fin is bigger than second dorsal. Flaps over its nostrils. The complexion of the upper surface of the shark ranges from blueish to greenish grey to brown or black and the lower surface is white or light grey to a yellow hue. The lighter hue underbelly camouflages due to countershading. Tiger sharks are documented to reach up to 5.5m (Heithaus, 2001; Anderson et al., 2014), and is the fourth largest shark in the world. DISTRIBUTION. Located mainly 45°N to 32°S in warm and temperate waters. Found in Caribbean Sea, the coasts of Atlantic Ocean, Indian Ocean and Pacific Ocean (Fig. 3) (Serena 2005; Mathea, 2011). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology HABITAT AND ACTIVITY. Saltwater species generally found in coastal or pelagic waters in depths of approximately 2-145m in shallow coastline habitats, river estuaries, habours, jetties, seagrass ecosystems, near continental and insular shelves. -
Early Miocene Chondrichthyans from the Culebra Formation, Panama: a Window Into Marine Vertebrate Faunas Before Closure the Central American Seaway
Journal of South American Earth Sciences 42 (2013) 159e170 Contents lists available at SciVerse ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames Early Miocene chondrichthyans from the Culebra Formation, Panama: A window into marine vertebrate faunas before closure the Central American Seaway Catalina Pimiento a,b,c,*, Gerardo Gonzalez-Barba d, Austin J.W. Hendy a,b, Carlos Jaramillo a, Bruce J. MacFadden b, Camilo Montes a,e, Sandra C. Suarez a, Monica Shippritt f a Smithsonian Tropical Research Institute, Box 2072, Balboa, Panama b Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA c Department of Biology, University of Florida, Gainesville, FL 32611, USA d Museo de Historia Natural, Area de Ciencias del Mar, La Paz, Universidad Autonoma de Baja California Sur, AP 23080, Mexico e Universidad de los Andes, Geociencias, Carrera 1A #18A-10, Bogotá, Colombia f Universidad Nacional de Panamá, Department of Biology, Apartado 3366, Panama article info abstract Article history: The newly described chondrichthyan fauna of the early Miocene Culebra Formation of Panama provides Received 29 July 2012 insight into the marine vertebrates occupying shallow seas adjacent to the Central American Seaway, Accepted 21 November 2012 prior to the rise of the Isthmus of Panama. This study takes advantage of a time-limited and unique opportunity to recover fossil from renewed excavations of the Panama Canal. The chondrichthyan fauna Keywords: of the Culebra Formation is composed of teeth and vertebral centra representing 12 taxa. The species Batoids found possessed a cosmopolitan tropical and warm-temperate distribution during the early Neogene and Depth preferences are similar to other assemblages of the tropical eastern Pacific and southern Caribbean. -
Miocene Paleontology and Stratigraphy of the Suwannee River Basin of North Florida and South Georgia
MIOCENE PALEONTOLOGY AND STRATIGRAPHY OF THE SUWANNEE RIVER BASIN OF NORTH FLORIDA AND SOUTH GEORGIA SOUTHEASTERN GEOLOGICAL SOCIETY Guidebook Number 30 October 7, 1989 MIOCENE PALEONTOLOGY AND STRATIGRAPHY OF THE SUWANNEE RIVER BASIN OF NORTH FLORIDA AND SOUTH GEORGIA Compiled and edit e d by GARY S . MORGAN GUIDEBOOK NUMBER 30 A Guidebook for the Annual Field Trip of the Southeastern Geological Society October 7, 1989 Published by the Southeastern Geological Society P. 0 . Box 1634 Tallahassee, Florida 32303 TABLE OF CONTENTS Map of field trip area ...... ... ................................... 1 Road log . ....................................... ..... ..... ... .... 2 Preface . .................. ....................................... 4 The lithostratigraphy of the sediments exposed along the Suwannee River in the vicinity of White Springs by Thomas M. scott ........................................... 6 Fossil invertebrates from the banks of the Suwannee River at White Springs, Florida by Roger W. Portell ...... ......................... ......... 14 Miocene vertebrate faunas from the Suwannee River Basin of North Florida and South Georgia by Gary s. Morgan .................................. ........ 2 6 Fossil sirenians from the Suwannee River, Florida and Georgia by Daryl P. Damning . .................................... .... 54 1 HAMIL TON CO. MAP OF FIELD TRIP AREA 2 ROAD LOG Total Mileage from Reference Points Mileage Last Point 0.0 0.0 Begin at Holiday Inn, Lake City, intersection of I-75 and US 90. 7.3 7.3 Pass under I-10. 12 . 6 5.3 Turn right (east) on SR 136. 15.8 3 . 2 SR 136 Bridge over Suwannee River. 16.0 0.2 Turn left (west) on us 41. 19 . 5 3 . 5 Turn right (northeast) on CR 137. 23.1 3.6 On right-main office of Occidental Chemical Corporation. -
PDF) S3 Table
RESEARCH ARTICLE Tooth mineralization and histology patterns in extinct and extant snaggletooth sharks, Hemipristis (Carcharhiniformes, Hemigaleidae)ÐEvolutionary significance or ecological adaptation? Patrick L. Jambura1*, Cathrin Pfaff1, Charlie J. Underwood2, David J. Ward3, JuÈrgen Kriwet1 a1111111111 1 Department of Palaeontology, University of Vienna, Vienna, Austria, 2 Department of Earth and Planetary a1111111111 Sciences, Birkbeck, University of London, London, United Kingdom, 3 Department of Earth Sciences, Natural a1111111111 History Museum, London, United Kingdom a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS Shark jaws exhibit teeth that are arranged into distinct series and files and display great Citation: Jambura PL, Pfaff C, Underwood CJ, diversities in shapes and structures, which not only is related to their function (grasping, cut- Ward DJ, Kriwet J (2018) Tooth mineralization ting, crushing) during feeding, but also bear a strong phylogenetic signal. So far, most and histology patterns in extinct and extant research on the relationship between shark teeth and feeding ecology and systematics snaggletooth sharks, Hemipristis (Carcharhiniformes, Hemigaleidae)Ð focused on the external tooth morphology only. Although the tooth histology of sharks has th Evolutionary significance or ecological been examined since the early 19 century, its functional and systematic implications are adaptation? PLoS ONE 13(8): e0200951. https:// still ambiguous. Shark teeth normally consist of either a porous, cellular dentine, osteoden- doi.org/10.1371/journal.pone.0200951 tine (in lamniform sharks and some batoids) or a dense layer of orthodentine (known from Editor: Alistair Robert Evans, Monash University, different sharks). Sharks of the order Carcharhiniformes, comprising ca. 60% of all extant AUSTRALIA shark species, are known to have orthodont teeth, with a single exceptionÐthe snaggle- Received: January 30, 2018 tooth shark, Hemipristis elongata.