Cost Boundary in Silicon Solar Panel

Total Page:16

File Type:pdf, Size:1020Kb

Cost Boundary in Silicon Solar Panel International Journal of Chemical Engineering and Applications, Vol. 2 , No. 5 , October 2011 Cost Boundary in Silicon Solar Panel V.K.Sethi, Mukesh Pandey, and Priti Shukla high-efficiency, high-output concentrator solar cells work in Abstract—Photovoltaic is a solar power technology that uses areas with minimal cloud cover, independent of temperature solar cells or solar photovoltaic arrays to convert light directly or latitude into electricity with no emission of dangerous gases and with Most solar-cell technology is silicon based. There are least amount of industrials waste. Solar cells are a key three primary types of silicon solar cells, each named after technology in the drive toward cleaner energy production. the crystalline structure of the silicon used during Unfortunately, solar technology is not yet economically competitive and the cost of solar cells needs to be brought fabrication: down. Growth of the photovoltaic (PV) market is still • Mono-crystalline silicon has a single and continuous constrained by high initial capital costs of PV. One way to crystal lattice structure with practically zero defects or overcome this problem is to reduce the amount of expensive impurities. semiconductor material used. The materials cost and manufacturing cost of thin-film solar is much lower than wafer • Poly-crystalline silicon, also called poly-silicon, comprises based and drops much faster than wafer based in large-scale discrete grains, or crystals, of mono-crystalline silicon that manufacturing, but thin-film solar cells tend to have lower create regions of highly uniform crystal structures performance compared with conventional solar cells. separated by grain boundaries. Developments in PV technologies may lead to cheaper systems at the likely expense of life expectancy and efficiency. Cost • Amorphous silicon is an entirely non-crystalline form of boundaries are required for future PV technologies to compete silicon that can be thought of as grains the size of the effectively within the current PV market.[ B. Azzopardi, 1 individual atoms. ].Micro- and nano-enabled thin-film photovoltaics provide an Crystalline Si’s relatively high efficiency has, however, a attractive-and increasingly cost-competitive-clean-tech negative correlation with temperature. The hotter it gets, the alternative to carbon-based energy solution. less electricity it produces. Most crystalline Si solar cells decline in efficiency by 0.50%/°C. Thus, it is particularly Index Term—Nanodefect, Nanowire, Breakthroughs suitable for cooler climates. Mono crystalline Si wafers, cut from grown cylindrical ingots, make the most productive cells, with efficiencies I. INTRODUCTION ranging from 20-24%. The crystal lattice is continuous and As more people become aware of the problems associated there are no grain boundaries. Polycrystalline Si wafers are with greenhouse-gas emissions, the demand for sources of cut from cast, square ingots. Due to the presence of grain clean energy goes up. As the demand for high-quality solar- boundaries, they achieve about half the efficiency of single- cell feedstock exceeds supply and drives prices upwards, crystal cells. Many commercialized solar cells incorporate cheaper but dirtier alternative feedstock materials are being amorphous silicon and poly-silicon, which have acceptable developed [Tonio Buonassis2]. c-Si has the advantage of conversion efficiency and cost much less than mono- maturity, material stability, the highest conversion crystalline silicon. efficiencies (the percentage of the sun’s energy converted into electricity), and an already-established global manufacturing infrastructure. But, thin-film PV has many advantages, too: It is lightweight, requires relatively minuscule amounts of active semiconducting materials, and can be applied on a variety of substrates, including plastics, flexible steel, composites, and building materials. High- relatively minuscule amounts of active semiconducting materials, and can be applied on a variety of substrates, including plastics, flexible steel, composites, and building Fig. 1 Schematic illustration of a silicon solar cell (a-Si:H) sandwiched between aluminum (Al) and transparent indium tin oxide (ITO) electrical materials. High-efficiency crystalline silicon cells are well contacts. Aluminum nanoparticles on the top (gray) enhance the absorption suited for cooler, high-latitude environments. Thin films are of light. more cost effective in warmer, brighter climates, while very The process developed by Naseem, known as topdown aluminum-induced crystallization, creates poly-silicon with crystal grains 30 times larger than grains currently produced Manuscript received March 28, 2011, revised September 19, 2011. Dr. V. K. Sethi is with HOD Energy, School of Energy Environment & in the photovoltaic industry. Standard poly-silicon contains Management , U.I.T, R.G.P.V. Bhopal, India. grains of 0.5 to 1 micrometer, which is one-100th the Dr. Mukesh Pandey is with School of Energy Environment & diameter of a human hair. Naseem’s process yielded a grain Management , U.I.T, R.G.P.V. Bhopal, India. Ms. Priti Shukla is with Technocrate Institute of Technology, Bhopal, size up to 150 micrometers, which is important because the India. (e-mail: [email protected], Mobile: 9893135065). performance of a photovoltaic device is limited primarily by 372 International Journal of Chemical Engineering and Applications, Vol. 2 , No. 5 , October 2011 defects at the boundaries of crystal grains. Increasing the feedstock, the development of low-cost ‘solar-grade silicon’ size of crystal grains decreases the number of boundaries. (SoG-Si) has been proposed, which contains much higher Traditional processing of silicon-based cells requires a concentrations of deleterious transition metal impurities. heating temperature of 1,000 degrees Celsius to cause the Many studies have shown that transition metals can silicon to reach a crystalline state. Naseem’s method of decrease the minority carrier diffusion length—a key converting amorphous silicon into poly-silicon can be done parameter for determining the efficiency of solar-cell at temperatures between 100 and 300 degrees Celsius, devices. An entirely new approach is needed to make cost- which saves time, materials and energy effective solar cells from low-cost, abundant, but impurity- rich feedstock. The concept proposed in this study opens a new and II. MANUFACTURING COST OF SOLAR CELL exciting opportunity to recover low quality silicon for A. Monocrystalline Cells commercially viable solar-cell material. This concept is not necessarily limited to annealing, it could also be extended to Monocrystalline cells are the most costly from a appropriate engineering during crystal growth. As material manufacturing standpoint. The raw material is expensive performance is vary on the distribution of the interstitial and there are a limited number of manufacturers. With metals, metal clusters and metal precipitates, and not only rectangular wafers cut from cylindrical ingots, there is a by total metal concentrations, even heavily contaminated substantial waste of refined Si. Improved manufacturing techniques are making wafers thinner and larger, and materials can show dramatic enhancements through optimized gridlines are obscuring less surface area, nanodefect engineering. The defect engineering could be improving efficiencies. Techniques for roughening the complemented by the existing solar-cell processing surface area, including building pyramidal structures, techniques such as gettering or hydrogen passivation, which increase the effective surface area as well. Si ink can be expected to improve the material performance. Even technologies can also incrementally improve cell efficiency. further metal-rich SoG-Si, which would be much cheaper and far more abundant than current silicon feedstock B. Polycrystalline Cells material, has the real potential to produce cost-effective Polycrystalline Si is much less expensive to produce; solar cells, provided metal nanodefects are engineered wafers are cut from large, rectangular blocks produced by correctly.[ Tonio Buonassisi 2]. carefully cooling and solidifying molten Si. In the market, there is a definite trend towards polycrystalline products as technological advances lessen the effects of grain IV. SOLAR CELLS CAN BE MADE THINNER AND LIGHTER boundaries. Sun Power, the world’s largest producer of Si WITH THE HELP OF ALUMINUM PARTICLES solar cells, has set records with its monocrystalline Metallic nanoparticles can direct light better into the solar technology, recently achieving 24.2% efficiency. However, cell and prevent light from escaping. In conventional ‘thick- Sun Power is increasingly investing in its polycrystalline film’ solar cells, the nanoparticles would have little effect product lines, anticipating the need to meet skyrocketing because all the light is absorbed by the film due to its demands with lower-cost manufacturing solutions. thickness. For thin films, however, the nanoparticles can C. Thin Films make a big difference. Their scattering increases the Thin-film photovoltaic solutions are gaining ground duration the light stays in the film, bringing the total quickly and are expected to capture up to 30% of solar panel absorption of light up to a level comparable with that for market share by 2013 . Production costs are significantly conventional solar cells. The strategy allows us to reduce less than with crystalline products for a variety of reasons: the production costs of solar
Recommended publications
  • Nanocrystal Quantum Dot Devices: How the Lead Sulfide (Pbs) System Teaches Us the Importance of Surfaces
    398 CHIMIA 2021, 75, No. 5 COLLOIDAL NANOCRYSTALS doi:10.2533/chimia.2021.398 Chimia 75 (2021) 398–413 © W. Lin, M. Yarema*, M. Liu, E. Sargent, V. Wood Nanocrystal Quantum Dot Devices: How the Lead Sulfide (PbS) System Teaches Us the Importance of Surfaces Weyde M. M. Lina, Maksym Yarema*a, Mengxia Liub, Edward Sargentb, and Vanessa Wood*a Abstract: Semiconducting thin films made from nanocrystals hold potential as composite hybrid materials with new functionalities. With nanocrystal syntheses, composition can be controlled at the sub-nanometer level, and, by tuning size, shape, and surface termination of the nanocrystals as well as their packing, it is possible to select the electronic, phononic, and photonic properties of the resulting thin films. While the ability to tune the properties of a semiconductor from the atomistic- to macro-scale using solution-based techniques presents unique opportunities, it also introduces challenges for process control and reproducibility. In this review, we use the example of well-studied lead sulfide (PbS) nanocrystals and describe the key advances in nanocrystal synthesis and thin-film fabrication that have enabled improvement in performance of photovoltaic devices. While research moves forward with novel nanocrystal materials, it is important to consider what decades of work on PbS nanocrystals has taught us and how we can apply these learnings to realize the full potential of nanocrystal solids as highly flexible materials systems for functional semiconductor thin-film devices. One key lesson is the importance of controlling and manipulating surfaces. Keywords: Lead sulfide colloidal nanocrystals · Nanocrystal quantum dot devices · Semiconductor nanocrystals Weyde M.
    [Show full text]
  • Copyright by Vikas Reddy Voggu 2017
    Copyright by Vikas Reddy Voggu 2017 The Dissertation Committee for Vikas Reddy Voggu Certifies that this is the approved version of the following dissertation: Development of Solution Processed, Flexible, CuInSe2 Nanocrystal Solar Cells Committee: Brian A. Korgel, Supervisor John G. Ekerdt Delia Milliron Thomas Truskett David A. Vanden Bout Development of Solution Processed, Flexible, CuInSe2 Nanocrystal Solar Cells by Vikas Reddy Voggu Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin December 2017 Dedication For my loving parents, Prabhakar Reddy Voggu and Mallika Voggu. For all those who are working towards the development of clean energy technologies. Acknowledgements Graduate study at UT Austin has been a time where I learnt the most in my life. I have grown as a scientist, leader, and effective communicator while pursuing my PhD. I am thankful for all the mentors and peers who helped me to gain this knowledge and become a better person. First of all, I would like to thank my adviser Dr. Brian Korgel, who always kept his trust in me while guiding me with tough projects. Right from the moment he called me the “(photovoltaic) device guru,” I have been inspired, and in times when the experiments do not go as planned, it is his belief in me and motivation that I received from him that kept me going. Apart from learning how to approach scientific problems, I have also developed collaboration and mentorship skills from him.
    [Show full text]
  • SCIENCE BEHIND the NANO SOLAR CELL Kshitij Yograj Patil 1 , Dr
    SCIENCE BEHIND THE NANO SOLAR CELL Kshitij Yograj Patil 1 , Dr. Vishali P.Sonawane 2 , Yograj Gorakh Patil 3 1. Student in First year Engineering , Sapkal Knowledge Hub , Anjneri (NASIK). 2. Asstent prof in Engineering Chemistry ,Brahama Valley,Engg.College,Anjneri –(NASIK) 3.Siniour Executive Officer in Glenmark ABSTRACT The Global Warming is today’s major problem of the world. Nano-technology has to come as boon in the energy sources in the form of solar –cell. It is eco-friendly device Nanotechnology, with its unprecedented control over the structure of materials, can provide us with superior materials that will unlock tremendous potential of many energy technologies currently at the discovery phase. The quest for more sustainable energy technologies is not only a scientific endeavor that can inspire a whole generation of scientists, but the best way to establish a new economy based on innovation, better paid jobs, and care for the environment I. INTRODUCTION As we know that Sun shines approximately 1000 watts of energy per square kilometer of Earth. If all this energy is to be converted into usable forms then it can light up our homes for many centuries that also free of cost. So this energy was collected in the form of panels called as solar panels. Solar panels are effective way to channelize sunlight and use it for electricity. An array of solar panels are also used to convert solar energy into electrical energy. solar cell were of larger size and having efficiency of 67.4% but changing the panel by silicon nano rods made it possible to capture 96.7% of light.
    [Show full text]
  • Direct Laser Written Nano- & Micro-Optical Textures For
    Direct Laser Written Nano- & Micro-Optical Textures for Photovoltaics Applications Zur Erlangung des akademischen Grades eines DOKTOR-INGENIEURS von der KIT-Fakultät für Elektrotechnik und Informationstechnik des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von M.Sc., Stephan Dottermusch geb. in: Pforzheim Tag der mündlichen Prüfung: 06. Juni 2019 Hauptreferent: Prof. Dr. Bryce Richards Korreferenten: Prof. Dr. Christiane Becker Prof. Dr. Heinz Kalt Kurzfassung xiv Kurzfassung Im Gegensatz zu anderen Technologien, welche der Gewinnung von elektrischer Energie dienen, basierte die Photovoltaik nicht auf einer langen Umwandlungskette. Anstatt einen Kraftstoff zu verbrennen, die Abwärme dieses Prozesses zur Wassererwärmung zu nutzen um schließlich mit Wasserdampf eine Turbine zu betreiben, welche einen elektrischen Generator antreibt, gelingt in der Photovoltaik die Umwandlung von Lichtenergie in elektrische Energie direkt. Dieser Vorgang ermöglicht eine Dezentralisierung der elektrischen Energiegewinnung. Des Weiteren besitzt die Photovoltaik mit der Sonne eine erneuerbare Energiequelle, welche auf menschlichen Zeitskalen nicht erlischt. Zusätzlich entstehen im Betrieb keine Treibhausgase, welche den Klimawandel weiter anheizen. Trotz der vielen Vorteile der Photovoltaik loht sich die Produktion von Solarzellen, als Herzstücke der elektrischen Energiegewinnung in der Photovoltaik, erst dann im großen Stil, wenn der Preis pro erzeugte kWh elektrische Energie mit dem anderer herkömmlicher Energieträger mithalten kann. Insbesondere der Wirkungsgrad einer Solarzelle hat signifikanten Einfluss auf die Kosten für die elektrische Energie. Der Wirkungsgrad hängt zum einen ab von der Effizienz, mit der einfallendes Licht in freie Ladungsträger umgewandelt werden kann, und zum anderen davon, mit welcher Effizienz die Ladungsträger extrahiert werden können. Diese Dissertation beschäftigt sich mit Oberflächenstrukturen, welche eine gesteigerte Nutzung des einfallenden Lichtes ermöglichen.
    [Show full text]
  • Low Cost Solar Cells to Enable Global Uptake of This Promising Technology
    Fabrication and Characterisation of a Nanocrystal Activated Schottky Barrier Solar Cell Philippa Kate Hardy Submitted in accordance with the requirements for the degree of Doctor of Philosophy as part of the integrated MSc/PhD in Low Carbon Technologies The University of Leeds Energy Research Institute School of Process, Environment and Materials Engineering Doctoral Training Centre in Low Carbon Technologies November, 2014 i The candidate confirms that the work submitted is her own, except where work which has formed part of jointly authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 4, 5 and 6 includes the following work; Philippa Hardy, Robert Mitchell, Ross Jarett, Richard Douthwaite and Rolf Crook, Nanocrystal Activated Schottky Barrier PV Cell, Proceedings from PVSAT-9, Wales, UK, 9-11th April 2013. The work detailed within this paper was all the candidates own with the guidance of Dr Rolf Crook, with the exception of the following; Ross Jarett who produced the silver nanowires, Robert Mitchell and Richard Douthwaite who produced the CdS and CdSe nanocrystals. Chapter 5 includes the following work; Philippa Hardy and Rolf Crook, A Nanocrystal Test Bed for Excitonic Photovoltaic Cells, Proceedings from PVSAT-7, Edinburgh, UK, 6-8th April 2011. The work detailed within this paper was all the candidates own with the guidance of Dr Rolf Crook. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.
    [Show full text]
  • JETIR Research Journal
    © 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162) SIMULATION OF POLYCRYSTALLINE SILICON SOLAR CELL USING GPVDM SOFTWARE 1P.Shanmugaraja, 2M. Swathika, 3A. Santhoshini. a Associate Professor, Dept. of Electronics and Instrumentation Engineering, Annamalai University – 608002, India b PG Student, Dept. of Electronics and Instrumentation Engineering, Annamalai University – 608002, Tamilnadu, India c NPMaSS MEMS Design centre, Dept. of Electronics and Instrumentation Engineering, Annamalai University – 608002, Tamilnadu, India Abstract : Electricity is playing a vital role in our daily life. Solar energy is an alternative source to produce electricity. Different types of solar cells are available to convert solar energy into electrical energy. In this paper, polycrystalline silicon solar cell is simulated using GPVDM software. Solar cell and GPVDM software are slightly explained first. Then, how the efficiency of solar cell is changed with respect to the change in thickness of different layers of a polycrystalline silicon solar cell is simulated and the outputs are represented in the form of graph. Finally, this paper concludes that the variation in the thickness of base layer causes notable change in efficiency when compared to other layers. Keywords - Solar cell, Polycrystalline silicon solar cell, GPVDM simulation software. INTRODUCTION A solar cell or photovoltaic cell is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect. It is a form of photoelectric cell whose electrical characteristics such as current, voltage or resistance vary, when exposed to light. Solar cells are photovoltaic, irrespective of whether the source is sunlight or an artificial light. Individual solar cell devices are combined to form modules, otherwise known as solar panels.
    [Show full text]
  • Fabrication & Characterization of TCO-Less Cylindrical Dye
    Fabrication & Characterization of TCO-less Cylindrical Dye-sensitized Solar Cells using Metallic Wires 著者 Kapil Gaurav year 2015 その他のタイトル メタル細線をバックコンタクト電極に用いた透明導 電膜を必要としない色素増感太陽電池の作製と光電 変換特性 学位授与年度 平成27年度 学位授与番号 17104甲生工第244号 URL http://hdl.handle.net/10228/5553 Fabrication & Characterization of TCO-less Cylindrical Dye-sensitized Solar Cells using Metallic Wires GRADUATE SCHOOL OF LIFE SCIENCE AND SYSTEMS ENGINEERING KYUSHU INSTITUTE OF TECHNOLOGY Thesis FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GAURAV KAPIL ENROLLMENT NO: 12897016 JUNE 2015 PHD. SUPERVISOR PROFESSOR. SHYAM S. PANDEY TABLE OF CONTENTS ABSTRACT CHAPTER 1: INTRODUCTION. 1-23 1.1 General overview of solar cells 1 1.2 Flexible solar cells 3 1.2.1 Silicon based flexible solar cells 3 1.2.2 CIGS based flexible solar cells 3 1.2.3 Plastic solar cells 5 1.3 Gratzel solar cells or dye-sensitized solar cells 6 1.3.1 Introduction & general working principle 6 1.3.2 Energy band diagram & recombination process involved 7 1.4 TCO-less dye-sensitized solar cells 8 1.5 Cylindrical solar cells 10 1.5.1 Cylindrical TCO-less dye-sensitized solar cells 12 1.5.2 Calculation of photoconversion efficiency for cylindrical solar cells 13 1.6 Challenges & ideas to overcome 15 References 17 CHAPTER 2: INSTRUMENTATION & CHARACTERIZATION 24-46 2.1 Characterization of solar cells 24 2.1.1 Current voltage measurement under standard test conditions 25 2.1.2 Short circuit current density (Jsc) and Incident photon to current conversion efficiency (IPCE) 26 2.1.3 Dark current and current-voltage characteristics
    [Show full text]
  • Download Conference Program
    Conference Program Program at a glance Start End Monday, December 10, 2018 8:00 9:30 A10 Registration 9:30 10:45 A11 Inauguration 10:45 11:30 Coffee Break 11:30 13:45 A12 Keynotes 1 13:45 14:45 Lunch Energy production and Electronic and Magnetic 14:45 16:25 A13 B13 Storage 1 Applications 1 16:25 17:00 Coffee Break Nanomedicine – Water, Food and 17:00 19:00 A14 Synthesis, Assembly B14 Environment and Characterization Start End Tuesday, December 11, 2018 Evaporators and Nano Pharmaceuticals 9:00 10:20 A21 B21 chemical reactors at the and Nutraceuticals microscale 10:20 11:00 A22a Keynotes 2a 11:00 11:30 Coffee Break 11:30 13:30 A22b Keynotes 2b 13:30 15:00 Lunch 15:00 16:50 A23 Exhibitors & Poster session 1 16:50 17:20 Coffee Break Energy production and Electronic and Magnetic 17:20 19:00 A24 B24 Storage 2 Applications 2 Start End Wednesday, December 12, 2018 Nano-Imaging / 9:00 10:20 A31 B31 Industrial Applications Diagnostics 10:20 10:50 Coffee Break 10:50 12:50 A32 Keynotes 3 12:50 14:20 Lunch 14:20 15:20 A33 Exhibitors & Poster session 2 15:20 15:50 Coffee Break Biomedical applications Micro and Nano 15:50 17:30 A34 B34 of nanotechnology sensors 1 19:00 20:00 Entertainment 20:00 21:30 Gala Dinner and Awards Start End Thursday, December 13, 2018 Micro and Nano sensors Nanotechnology 9:00 10:40 A41 B41 2 Challenges 10:40 11:10 Coffee Break 11:10 12:30 A42 Nano Association 12:30 13:30 Lunch 13:30 14:30 A43 Panel 14:30 14:45 Coffee Break 14:45 15:00 A44 Closing session Session name is composed of 3 Characters: 1st character Hall: A or B
    [Show full text]
  • Low-Temperature Induced Enhancement of Photoelectric Performance in Semiconducting Nanomaterials
    nanomaterials Review Low-Temperature Induced Enhancement of Photoelectric Performance in Semiconducting Nanomaterials Liyun Wu 1,2, Yun Ji 2,3, Bangsen Ouyang 2,3, Zhengke Li 1,* and Ya Yang 2,3,4,* 1 School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; [email protected] 2 Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; [email protected] (Y.J.); [email protected] (B.O.) 3 School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China 4 Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China * Correspondence: [email protected] (Z.L.); [email protected] (Y.Y.) Abstract: The development of light-electricity conversion in nanomaterials has drawn intensive attention to the topic of achieving high efficiency and environmentally adaptive photoelectric tech- nologies. Besides traditional improving methods, we noted that low-temperature cooling possesses advantages in applicability, stability and nondamaging characteristics. Because of the temperature- related physical properties of nanoscale materials, the working mechanism of cooling originates from intrinsic characteristics, such as crystal structure, carrier motion and carrier or trap density. Here, emerging advances in cooling-enhanced photoelectric performance are reviewed, including aspects Citation: Wu, L.; Ji, Y.; Ouyang, B.; of materials, performance and mechanisms. Finally, potential applications and existing issues are also Li, Z.; Yang, Y. Low-Temperature summarized. These investigations on low-temperature cooling unveil it as an innovative strategy to Induced Enhancement of further realize improvement to photoelectric conversion without damaging intrinsic components Photoelectric Performance in and foresee high-performance applications in extreme conditions.
    [Show full text]
  • Conference Programme
    Monday, 25 September 2017 Monday, 25 September 2017 CONFERENCE PROGRAMME ORAL PRESENTATIONS 1AO.1 13:30 - 15:00 Devices & Characterisation Please note, that this Programme may be subject to alteration and the organisers reserve the right to do so without giving prior notice. The current version of the Programme is available at www.photovoltaic-conference.com. Chairpersons: Martin C. Schubert (i) = invited Fraunhofer ISE, Germany Albert Polman AMOLF, Netherlands Monday, 25 September 2017 1AO.1.1 Analysis for Efficiency Potential of High Efficiency Solar Cells M. Yamaguchi OPENING TTI, Nagoya, Japan H. Yamada PLENARY SESSION 1AP.1 NEDO, Kawasaki, Japan Y. Katsumata 08:30 - 09:30 Stairway to High Efficiency JST, Chiyoda, Japan 1AO.1.2 Special Introductory Presentation: Efficiency Limit of a 17.8% Efficiency Nanowire Chairpersons: Solar Cell Nicholas J. Ekins-Daukes J.E.M. Haverkort, D. van Dam, Y. Cui, A. Cavalli, N.J.J. van Hoof, P.J. van Veldhoven & Imperial College London, United Kingdom E.P.A.M. Bakkers John Van Roosmalen Eindhoven University of Technology, Netherlands ECN, Netherlands S.A. Mann & E.C. Garnett AMOLF, Amsterdam, Netherlands 1AP.1.1 Indirect to Direct Bandgap Transition in Methylammonium Lead Halide Perovskite J. Gómez Riva T. Wang, B. Daiber, S.A. Mann, E.C. Garnett & B. Ehrler DIFFER, Eindhoven, Netherlands AMOLF, Amsterdam, Netherlands J.M. Frost & A. Walsh 1AO.1.3 EU PVSEC Student Award Winner Presentation: Multi-Segment Photovoltaic Laser Imperial College London, United Kingdom Power Converters and Their Electrical Losses R. Kimovec & M. Topic 1AP.1.2 EU PVSEC Student Award Winner Presentation: Maximum Power Extraction Enabled University of Ljubljana, Slovenia by Monolithic Tandems Using Interdigitated Back Contact Bottom Cells with Three H.
    [Show full text]
  • SCIENCE BEHIND the NANO SOLAR CELL Kshitij Yograj Patil 1 , Dr
    SCIENCE BEHIND THE NANO SOLAR CELL Kshitij Yograj Patil 1 , Dr. Vishali P.Sonawane 2 , Yograj Gorakh Patil 3 1. Student in First year Engineering , Sapkal Knowledge Hub , Anjneri (NASIK). 2. Asstent prof in Engineering Chemistry ,Brahama Valley,Engg.College,Anjneri –(NASIK) 3.Siniour Executive Officer in Glenmark ABSTRACT The Global Warming is today’s major problem of the world. Nano-technology has to come as boon in the energy sources in the form of solar –cell. It is eco-friendly device Nanotechnology, with its unprecedented control over the structure of materials, can provide us with superior materials that will unlock tremendous potential of many energy technologies currently at the discovery phase. The quest for more sustainable energy technologies is not only a scientific endeavor that can inspire a whole generation of scientists, but the best way to establish a new economy based on innovation, better paid jobs, and care for the environment I. INTRODUCTION As we know that Sun shines approximately 1000 watts of energy per square kilometer of Earth. If all this energy is to be converted into usable forms then it can light up our homes for many centuries that also free of cost. So this energy was collected in the form of panels called as solar panels. Solar panels are effective way to channelize sunlight and use it for electricity. An array of solar panels are also used to convert solar energy into electrical energy. solar cell were of larger size and having efficiency of 67.4% but changing the panel by silicon nano rods made it possible to capture 96.7% of light.
    [Show full text]
  • Improving Solar Cell Efficiency Using Lead Selenium Nanocrystals
    Improving Solar Cell Efficiency using Lead Selenium Nanocrystals Luke Toroitich Rottok exposed to sunlight. At the nano-scale the increased flow of Abstract—Solar cells convert the sun's energy into electricity. The current yields to higher voltages generated, thus greater flow of current in the solar panel generates power which can be used efficiency as compared to a panel made of silicon crystals to drive a load. Currently, solar panels have an efficiency of up to 18 [3][7][8]. Currently research in solar energy has resulted in percent. Most of the solar panels are made from silicon crystals. silicon based solar cells with efficiency of about 18 percent, Silicon is used due to its availability in sand and surface soils. The production of solar cells using silicon requires highly clean the highest laboratory efficiency being recorded at 19.42 environment and pure silicon. This results to an expensive production percent. This efficiency has been achieved by reducing process and frequent maintenance. Solar cells used in Kenya are reflection of the sun's rays, reducing the thickness of the cell, imported from other countries. This research proposes the dye sensitizing of the solar cell and reducing the size of the replacement of silicon in the solar cell with lead selenium silicon crystals [6][10][11]. nanocrystals, which can be produced locally. The nanocrystals are This study focuses on the application of lead selenium obtained from reaction solutions and separating them using a centrifuge machine. A solar cell is then fabricated by laying the lead nanocrystals in solar cells to improve the efficiency of the selenium nanocrystal on a substrate by chemical vapor deposition.
    [Show full text]