Taqman Probe Assays on Different Biological Samples
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ambrosia Beetle
Ambrosia beetle (Xylosandrus germanus) infestations and management trials in high-density apple orchards Arthur Agnello, Deborah Breth, Abagail Davis and Elizabeth Tee Dept. of Entomology, Cornell University Background The ambrosia beetle Xylosandrus germanus (Blandford) (Coleoptera: Curculionidae: Scolytinae), also known as the black stem borer, is a serious pest in ornamental tree nurseries and landscapes in North America. A native of Asia (mainly Japan, Korea, Vietnam, China, and Taiwan), it now occurs in central Europe and the US, first documented here in New York, in greenhouse-grown grape stems. Since then, it has become established in much of the United States. It has previously been noted as a pest in ornamental nurseries, with a wide host range including oak, elm, red maple, beech, and other hardwood species. It attacks and bores galleries into the wood of trunks or limbs of apparently healthy plants and those that are stressed, dying or recently dead. Galleries are excavated by the females, and comprise entrance tunnels, brood chambers containing eggs, and branch tunnels where young develop. The species is bivoltine and overwinters as adults, primarily females, in galleries of its host plants. The term "ambrosia beetle" refers to species that derive nourishment during the larval and adult stages from a mutualistic "ambrosia" fungus carried by the adult female in mycangia (internal pouches) and introduced into host plants during gallery excavation. The ambrosia fungus associated with X. germanus is Ambrosiella hartigii Batra, visible in the galleries as an abundant grayish-white mycelium growth. It is this fungal growth that the insects feed on, and not the host plant tissue. -
Patterns of Coevolution Between Ambrosia Beetle Mycangia and the Ceratocystidaceae, with Five New Fungal Genera and Seven New Species
Persoonia 44, 2020: 41–66 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.02 Patterns of coevolution between ambrosia beetle mycangia and the Ceratocystidaceae, with five new fungal genera and seven new species C.G. Mayers1, T.C. Harrington1, H. Masuya2, B.H. Jordal 3, D.L. McNew1, H.-H. Shih4, F. Roets5, G.J. Kietzka5 Key words Abstract Ambrosia beetles farm specialised fungi in sapwood tunnels and use pocket-like organs called my- cangia to carry propagules of the fungal cultivars. Ambrosia fungi selectively grow in mycangia, which is central 14 new taxa to the symbiosis, but the history of coevolution between fungal cultivars and mycangia is poorly understood. The Microascales fungal family Ceratocystidaceae previously included three ambrosial genera (Ambrosiella, Meredithiella, and Phia Scolytinae lophoropsis), each farmed by one of three distantly related tribes of ambrosia beetles with unique and relatively symbiosis large mycangium types. Studies on the phylogenetic relationships and evolutionary histories of these three genera two new typifications were expanded with the previously unstudied ambrosia fungi associated with a fourth mycangium type, that of the tribe Scolytoplatypodini. Using ITS rDNA barcoding and a concatenated dataset of six loci (28S rDNA, 18S rDNA, tef1-α, tub, mcm7, and rpl1), a comprehensive phylogeny of the family Ceratocystidaceae was developed, including Inodoromyces interjectus gen. & sp. nov., a non-ambrosial species that is closely related to the family. Three minor morphological variants of the pronotal disk mycangium of the Scolytoplatypodini were associated with ambrosia fungi in three respective clades of Ceratocystidaceae: Wolfgangiella gen. -
Xylosandrus Germanus and Walnut Disease: an Association New to Europe
Forster, B.; M.; Grodzki, W. (eds.) 1999: Methodology of Forest Insect and Disease Survey in Central Europe. Proceedings of the Second Workshop ofthe IUFRO WP 7.03.10, April20-23, 1999, Sion-Chateauneuf, Switzerland. Birmensdorf, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) 98-101. XYLOSANDRUS GERMANUS AND WALNUT DISEASE: AN ASSOCIATION NEW TO EUROPE Frigimelica G.1, Stergulc, F.\ Zandigiacomo P.2, Faccoli M.1 & Battisti A.1 1) Institute of Agricultural Entomology, University ofPadua 16/a via Rornea, 35020 -Legnaro (PD)-Italy 2) Department of Plant Protection, University ofUdine, Italy 208, Via delle Scienze, 33100 Udine, Italy Introduction The forest service of the Friuli Venezia Giulia district (north-eastern Italy) pays a great attention to the sanitary conditions of both forests and plantations (Stergulc et al., 1999). The damage caused by pests and diseases are the object of a permanent monitoring net, called "BAUSINVE-Forest Pest and Disease Inventory", in which any kind of biotic damage occurring in any part of the district, is registered. Foresters were provided with an identification handbook of both pests and diseases (Stergulc & Frigirnelica, 1996). At the beginning of the summer of 1998, several trees in young plantations of European walnut (Juglans regia L.), situated in this district, showed a series of disease symptoms, such as wilting, dieback, stern cankers and production of sprouts near the ground. On the bark of diseased trees either pink or whitish sporodochia were visible. A large part of diseased trees were also colonised by the ambrosia beetle Xylosandrus germanus (Blandford) (=Xyleborus germanus, Coleoptera: Scolytidae), a species new to Italy (Stergulc et al., 1999). -
Molekulární Fylogeneze Podčeledí Spondylidinae a Lepturinae (Coleoptera: Cerambycidae) Pomocí Mitochondriální 16S Rdna
Jihočeská univerzita v Českých Budějovicích Přírodovědecká fakulta Bakalářská práce Molekulární fylogeneze podčeledí Spondylidinae a Lepturinae (Coleoptera: Cerambycidae) pomocí mitochondriální 16S rDNA Miroslava Sýkorová Školitel: PaedDr. Martina Žurovcová, PhD Školitel specialista: RNDr. Petr Švácha, CSc. České Budějovice 2008 Bakalářská práce Sýkorová, M., 2008. Molekulární fylogeneze podčeledí Spondylidinae a Lepturinae (Coleoptera: Cerambycidae) pomocí mitochondriální 16S rDNA [Molecular phylogeny of subfamilies Spondylidinae and Lepturinae based on mitochondrial 16S rDNA, Bc. Thesis, in Czech]. Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. 34 pp. Annotation This study uses cca. 510 bp of mitochondrial 16S rDNA gene for phylogeny of the beetle family Cerambycidae particularly the subfamilies Spondylidinae and Lepturinae using methods of Minimum Evolutin, Maximum Likelihood and Bayesian Analysis. Two included representatives of Dorcasominae cluster with species of the subfamilies Prioninae and Cerambycinae, confirming lack of relations to Lepturinae where still classified by some authors. The subfamily Spondylidinae, lacking reliable morfological apomorphies, is supported as monophyletic, with Spondylis as an ingroup. Our data is inconclusive as to whether Necydalinae should be better clasified as a separate subfamily or as a tribe within Lepturinae. Of the lepturine tribes, Lepturini (including the genera Desmocerus, Grammoptera and Strophiona) and Oxymirini are reasonably supported, whereas Xylosteini does not come out monophyletic in MrBayes. Rhagiini is not retrieved as monophyletic. Position of some isolated genera such as Rhamnusium, Sachalinobia, Caraphia, Centrodera, Teledapus, or Enoploderes, as well as interrelations of higher taxa within Lepturinae, remain uncertain. Tato práce byla financována z projektu studentské grantové agentury SGA 2007/009 a záměru Entomologického ústavu Z 50070508. Prohlašuji, že jsem tuto bakalářskou práci vypracovala samostatně, pouze s použitím uvedené literatury. -
Co-Adaptations Between Ceratocystidaceae Ambrosia Fungi and the Mycangia of Their Associated Ambrosia Beetles
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles Chase Gabriel Mayers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biodiversity Commons, Biology Commons, Developmental Biology Commons, and the Evolution Commons Recommended Citation Mayers, Chase Gabriel, "Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles" (2018). Graduate Theses and Dissertations. 16731. https://lib.dr.iastate.edu/etd/16731 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles by Chase Gabriel Mayers A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Microbiology Program of Study Committee: Thomas C. Harrington, Major Professor Mark L. Gleason Larry J. Halverson Dennis V. Lavrov John D. Nason The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright © Chase Gabriel Mayers, 2018. -
Purdue University Name of Student: Department of Entomology Sean Tormoehlen Undergraduate Capstone Project Summary Name of Mentor
Purdue University Name of Student: Department of Entomology Sean Tormoehlen Undergraduate Capstone Project Summary Name of Mentor: Dr. Matthew Ginzel Project Title: Seasonal flight activity of scolytine beetles associated with black walnut Introduction: Black walnut (Juglans nigra) is an important hardwood species in the Eastern United States because of its role in the environment and the contributions it makes to the economy. Black walnut trees help to reduce soil erosion and they provide a rich food source for a variety of wildlife including birds and squirrels. They are also known to produce juglone, an allelochemical, which suppresses growth of plants around the tree and alters fauna (Virginia Cooperative Extension). Black walnut is an important economical resource because of its desirable wood qualities and nut production. It is used in a wide variety of wood products including furniture, veneer, plywood panels, and gunstocks. These products bring in $21.4 million into Indiana’s economy annually and $325 million through annual U.S. exports. It is projected that the estimated value of black walnut in its native range is $569 billion (USFS 2002). Black Walnut trees are currently being challenged by thousand cankers disease. This disease is caused by a fungus, (Geosmithia morbida), that is associated with the walnut twig beetle (Pityophthorus juglandis). The main symptoms of thousand cankers disease are small cankers underneath the bark, on branches and the trunk, entry holes from the walnut twig beetle, and branch death (USDA Forest Service, 2013). Infection occurs when an adult walnut twig beetle emerges from a symptomatic tree and flies to a new black walnut tree where it bores into the bark introducing the fungus. -
Entomofauna Ansfelden/Austria; Download Unter
© Entomofauna Ansfelden/Austria; download unter www.zobodat.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 36, Heft 10: 121-176 ISSN 0250-4413 Ansfelden, 2. Januar 2015 An annotated catalogue of the Iranian Braconinae (Hymenoptera: Braconidae) Neveen S. GADALLAH & Hassan GHAHARI Abstract The present work comprises a comprehensive faunistic catalogue of the Braconinae collected and recorded from the different localities of Iran over the past fifty years. It includes 115 species and subspecies in 11 genera (Atanycolus FÖRSTER, Baryproctus ASHMEAD, Bracon FABRICIUS, Coeloides WESMAEL, Glyptomorpha HOLMGREN, Habrobracon ASHMEAD, Iphiaulax FOERSTER, Megalommum SZÉPLIGETI, Pseudovipio SZÉPLIGETI, Rhadinobracon SZÉPLIGETI and Vipio LATREILLE) and four tribes (Aphrastobraconini, Braconini, Coeloidini, Glyptomorphini). Synonymies, distribution and host data are given. Key words: Hymenoptera, Braconidae, Braconinae, catalogue, Iran. Zusammenfassung Vorliegende Arbeit behandelt einen flächendeckenden faunistischen Katalog der Braconidae des Irans im Beobachtungszeitraum der letzten fünfzig Jahre. Es gelang der Nachweis von 115 Arten und Unterarten aus den 11 Gattungen Atanycolus FÖRSTER, Baryproctus ASHMEAD, Bracon FABRICIUS, Coeloides WESMAEL, Glyptomorpha 121 © Entomofauna Ansfelden/Austria; download unter www.zobodat.at HOLMGREN, Habrobracon ASHMEAD, Iphiaulax FOERSTER, Megalommum SZÉPLIGETI, Pseudovipio SZÉPLIGETI, Rhadinobracon SZÉPLIGETI und Vipio LATREILLE. Angaben zur Synonymie und Verbreitung sowie zu Wirtsarten werden angeführt. Introduction Braconinae is a large subfamily of cyclostomes group of parasitic wasps in the family Braconidae (Hymenoptera: Ichneumonoidea). They constitute more than 2900 described species that are mostly tropical and subtropical (YU et al. 2012). Members of this subfamily are often black, red, orange and/or white in colours. They are small to medium-sized insects, characterized by their concave labrum, absence of epicnemial carina, absence of occipital carina, females have extended ovipositor (SHARKEY 1993). -
Kentucky Nursery LISTSERV Bulletin University of Kentucky Nursery Crops Team End of April 2016
Kentucky Nursery LISTSERV Bulletin University of Kentucky Nursery Crops Team End of April 2016 Last Frost Date? Nursery Crops Team Winston Dunwell It seems likely we may have already had our last Extension Professor frost date for most of the Commonwealth. 270.365.7541 x209 Historically, the last frost date for most of Kentucky Dewayne Ingram Extension Professor occurs before May 5th, and this is especially true in 859.257.8903 the central and western portions of the state. Zenaida Viloria Eastern Kentucky’s safe date is May 15th. Looking at Extension Associate 270.365.7541 x279 the long range forecast, we seem to have warmer Carey Grable and drier than average weather coming in May. Extension Associate 270.348.1494 Be sure to look at UKAg Weather’s Long Range Joshua Knight Outlooks for more information, and look at this Extension Associate 859.257.1273 issue’s information on Clearwing borer emergence, https://nursery-crop- Fruit tree disease risks, and the Ambrosia beetle. extension.ca.uky.edu/ Joshua Knight, Editor Clearwing Borer Fruit Tree Disease Risks Ambrosia beetle [3-4 Week Outlook, May 7—May 20], Precipitation Probability, Image: NOAA Clearwing borer emergence Carey Grable, Extension Associate, Nursery Crops With the month of May comes the emergence of the Clearwing Borer group. There are several borers in this group including the dogwood borer, lilac borer, peachtree borer, and lesser peachtree borer. Growers of peach, plum, and flowering cherry should be especially aware of the lesser Clearwing borer pheromone lure. peachtree borer. Image: Gimplers Borers generally target stressed plants weakened by drought, soil compaction, sun scald, or transplanting. -
Reporting Service 2001, No
ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service Paris, 2001-10-01 Reporting Service 2001, No. 10 CONTENTS 2001/171 - New data on quarantine pests and pests of the EPPO Alert List 2001/172 - First report of Liriomyza sativae in Japan 2001/173 - Liriomyza trifolii found in Norway 2001/174 - Survey on glasshouse pests in Estonia 2001/175 - Survey on Erwinia amylovora in Estonia 2001/176 - Pitch canker is present in Chile 2001/177 - Fumigation treatments against Bursaphelenchus xylophilus in wood packing material 2001/178 - Japanese studies on quarantine treatments against forest pests 2001/179 - Meeting between Russia, Finland, Sweden and Estonia on forest quarantine issues 2001/180 - Ciborinia camelliae occurs in Italy 2001/181 - Biological control against Rhynchophorus ferrugineus and details on its distribution in Egypt 2001/182 - Interception in Israel of Chrysodeixis eriosoma on orchids from the Netherlands 2001/183 - First finding of cucurbit yellow vine disease in Massachusetts (US) 2001/184 - Citrus strains of Xylella fastidiosa can cause coffee leaf scorch 2001/185 - First report of Xylella fastidiosa on coffee in Costa Rica 2001/186 - PCR assay to detect Xylophilus ampelinus in grapevine cuttings 2001/187 - 54th International Symposium on Crop Protection in Gent 1, rue Le Nôtre Tel. : 33 1 45 20 77 94 E-mail : [email protected] 75016 Paris Fax : 33 1 42 24 89 43 Web : www.eppo.org EPPO Reporting Service 2001/171 New data on quarantine pests and pests of the EPPO Alert List By browsing through the literature, the EPPO Secretariat has extracted the following new data concerning quarantine pests and pests included on the EPPO Alert List. -
(Curculionidae, Scolytinae, Platypodinae) Alien to Europe
A peer-reviewed open-access journal ZooKeys Bark56: 227–251 beetles (2010) and pinhole borers (Curculionidae, Scolytinae, Platypodinae) alien to Europe 227 doi: 10.3897/zookeys.56.529 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research Bark beetles and pinhole borers (Curculionidae, Scolytinae, Platypodinae) alien to Europe Lawrence R. Kirkendall1, Massimo Faccoli2 1 Department of Biology, University of Bergen, P.O. Box 7803, N-5006 Bergen, Norway 2 Department of Environmental Agronomy and Crop Productions – Entomology, Viale dell’Università, 16 - 35020 Legnaro (PD), Italy Corresponding author: Lawrence R. Kirkendall ( [email protected] ) Academic editor: Miloš Knížek | Received 24 October 2009 | Accepted 31 March 2010 | Published 17 September 2010 Citation: Kirkendall LR, Faccoli M (2010) Bark beetles and pinhole borers (Curculionidae, Scolytinae, Platypodinae) alien to Europe. In: Cognato AI, Knížek M (Eds) Sixty years of discovering scolytine and platypodine diversity: A tribute to Stephen L. Wood. ZooKeys 56 : 227 – 251 . doi: 10.3897/zookeys.56.529 Abstract Invasive bark beetles are posing a major threat to forest resources around the world. DAISIE’s web-based and printed databases of invasive species in Europe provide an incomplete and misleading picture of the alien scolytines and platypodines. We present a review of the alien bark beetle fauna of Europe based on primary literature through 2009. We fi nd that there are 18 Scolytinae and one Platypodinae species ap- parently established in Europe, from 14 diff erent genera. Seventeen species are naturalized. We argue that Trypodendron laeve, commonly considered alien in Europe, is a native species; conversely, we hypothesize that Xyleborus pfeilii, which has always been treated as indigenous, is an alien species from Asia. -
Pest Risk Analysis for Thousand Cankers Disease (Geosmithia Morbida and Pityophthorus Juglandis)
EUROPEAN AND MEDITERRANEAN PLANT PROTECTION ORGANIZATION ORGANISATION EUROPEENNE ET MEDITERRANEENNE POUR LA PROTECTION DES PLANTES 15-21058 Pest Risk Analysis for Thousand cankers disease (Geosmithia morbida and Pityophthorus juglandis) September 2015 EPPO 21 Boulevard Richard Lenoir 75011 Paris www.eppo.int [email protected] This risk assessment follows the EPPO Standard PM PM 5/5(1) Decision-Support Scheme for an Express Pest Risk Analysis (available at http://archives.eppo.int/EPPOStandards/pra.htm) and uses the terminology defined in ISPM 5 Glossary of Phytosanitary Terms (available at https://www.ippc.int/index.php). This document was first elaborated by an Expert Working Group and then reviewed by the Panel on Phytosanitary Measures and if relevant other EPPO bodies. Cite this document as: EPPO (2015) Pest risk analysis for Thousand cankers disease (Geosmithia morbida and Pityophthorus juglandis). EPPO, Paris. Available at http://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRA_intro.htm Photo Superficial cankers caused by Geosmithia morbida on Juglans nigra and insect holes (Pityophthorus juglandis). Courtesy: Prof. Lucio Montecchio, Universita di Padova, IT. 15-21058 (15-20694, 15-20353 14-20219 14-20142 14-19823, 14-19733) Pest Risk Analysis for Thousand cankers disease (Geosmithia morbida and Pityophthorus juglandis) This PRA follows EPPO Standard PM 5/5 Decision-Support Scheme for an Express Pest Risk Analysis. PRA area: EPPO region Prepared by: Expert Working Group on Thousand cankers disease Date: 2014-08-26/29. Composition of the Expert Working Group (EWG) CRANSHAW Whitney (Mr) Colorado State University, Department of Bioagricultural Sciences and Pest Management, 80523 Fort Collins, Colorado, United States Tel: +1-9704916781 - [email protected] GRÉGOIRE Jean-Claude (Mr) Université Libre de Bruxelles, 50 av. -
Gene Sequence Analysis of Mitochondrial COI in Genus Saperda (Coleoptera:Cerambycidae:Lamiinae)
PREPRINT Author-formatted, not peer-reviewed document posted on 29/06/2021 DOI: https://doi.org/10.3897/arphapreprints.e70782 Gene Sequence Analysis of Mitochondrial COI in Genus Saperda (Coleoptera: Cerambycidae: Lamiinae) Wei XU, Qinhua Gan, Jian Pu, Yingwen Pan, Bo Cai, Su Ao, Rui Meng, Li Chen Disclaimer on biological nomenclature and use of preprints The preprints are preliminary versions of works accessible electronically in advance of publication of the final version. They are not issued for purposes of botanical, mycological or zoological nomenclature andare not effectively/validly published in the meaning of the Codes. Therefore, nomenclatural novelties (new names) or other nomenclatural acts (designations of type, choices of priority between names, choices between orthographic variants, or choices of gender of names)should NOT be posted in preprints. The following provisions in the Codes of Nomenclature define their status: International Code of Nomenclature for algae, fungi, and plants (ICNafp) Article 30.2: “An electronic publication is not effectively published if there is evidence within or associated with the publication that its content is merely preliminary and was, or is to be, replaced by content that the publisher considers final, in which case only the version with that final content is effectively published.” In order to be validly published, a nomenclatural novelty must be effectively published (Art. 32.1(a)); in order to take effect, other nomenclatural acts must be effectively published (Art. 7.10, 11.5, 53.5, 61.3, and 62.3). International Code of Zoological Nomenclature (ICZN) Article: 21.8.3: "Some works are accessible online in preliminary versions before the publication date of the final version.