CP3-15-12 Heavy baryons as polarimeters at colliders Mario Galanti,a Andrea Giammanco,b;c Yuval Grossman,d Yevgeny Kats,e Emmanuel Stamou,e and Jure Zupanf aDepartment of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171, USA bCentre for Cosmology, Particle Physics and Phenomenology, Universit´ecatholique de Louvain, B-1348 Louvain-la-Neuve, Belgium cNational Institute of Chemical Physics and Biophysics, 10143 Tallinn, Estonia dLaboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853, USA eDepartment of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001, Israel f Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA E-mail:
[email protected],
[email protected],
[email protected],
[email protected],
[email protected],
[email protected] Abstract: In new-physics processes that produce b or c jets, a measurement of the initial b or c-quark polarization could provide crucial information about the structure of the new physics. In the heavy-quark limit, the b and c-quark polarizations are preserved in the lightest baryons they hadronize into, Λb and Λc, respectively. We revisit the prediction for the polarization retention after the hadronization process and extend it to the case of trans- verse polarization. We show how ATLAS and CMS can measure the b-quark polarization + − + using semileptonic Λb decays, and the c-quark polarization using Λc ! pK π decays. For calibrating both measurements we suggest to use tt¯ samples in which these polariza- tions can be measured with precision of order 10% using 100 fb−1 of data in Run 2 of the LHC.