Pacific Island Palms Inventory List 2019 Please Contact Us for Pictures

Total Page:16

File Type:pdf, Size:1020Kb

Pacific Island Palms Inventory List 2019 Please Contact Us for Pictures Pacific Island Palms inventory list 2019 Please contact us for pictures, descriptions,sizes and prices of any Palm variety on our inventory list. Quantities are limited. Delivery available. (808)­280­2194 [email protected] Species Index Common Name Index 1. Actinokentia divaricata (red new leaf) 2. Archontophoenix maxima Walsh river king palm 3. Archontophoenix purpurea Purple king palm (purple crownshaft) 4. Areca macrocalyx (red crownshaft) Highland betel nut palm 5. Areca triandra (fragrant flower) 6. Areca vestiaria (orange crownshaft) Orange collar palm 7. Areca vestiaria (red crownshaft) 8. Areca vestiaria (yellow crownshaft) 9. Arenga australasica 10. Basselinia pancheri Micro kentia palm 11. Beccariophoenix madagascariensis Madagascar coconut palm 12. Bentinckia condapanna Lord Bentinck’s palm 13. Bismarckia nobilis (silver form) Bismark palm 14. Brahea dulcis Rock palm 15. Brassiophoenix drymophloeoides 16. Burretiokentia hapala Dreadlock palm 17. Burretiokentia vieillardii 18. Butia eriospatha Woolly Butia palm 19. Calyptrocalyx albertisianus Sunset palm 20. Calyptrocalyx leptostachys 21. Calyptronoma rivalis Manic palm 22. Carpentaria acuminata Carpentaria palm 23. Carpoxylon macrosperma Rip Curl palm 24. Caryota mitis Clustering fishtail palm 25. Caryota ophiopellis Snake skin palm 26. Caryota zebrina Zebra palm 27. Chambeyronia hookeri Red flame palm, 28. Chambeyronia macrocarpa Red feather palm 29. Copernicia alba Caranday palm 30. Copernicia berteroana 31. Cryosophila albida 32. Cyphophoenix nucele 33. Cyrtostachys lakka Sealing wax palm 34. Dictyosperma furfuraceum Princess palm 35. Dypsis albofarinosa (white petiole) 36. Dypsis ambositrae 37. Dypsis baronii (white crown shaft) 38. Dypsis basilonga 39. Dypsis cabadae Blue areca palm 40. Dypsis carlsmithii 41. Dypsis decaryi Triangle palm 42. Dypsis decipiens 43. Dypsis lanceolata 44. Dypsis lastelliana Redneck palm 45. Dypsis leptocheilos Teddy bear palm 46. Dypsis lutescens Areca palm, Butterfly palm, Golden cane palm 47. Dypsis mahajanga 48. Dypsis mananjarensis Mealybug palm 49. Dypsis onilahensis (True weeping form) 50. Dypsis pembana 51. Dypsis sp.orange crush 52. Dypsis rivularis Sakalava palm 53. Dypsis rosea 54. Dypsis saintelucei 55. Dypsis utilis 56. Euterpe edulis Juncara palm 57. Euterpe oleracea Assai palm 58. Euterpe precatoria (variegated form) Mountain cabbage palm 59. Heterospathe delicatula 60. Heterospathe woodfordiana 61. Hydriastele beguinii 62. Hydriastele pinangoides (new pink leaf) 63. Hyophorbe lagenicaulis Bottle palm 64. Hyophorbe verschaffeltii Spindle palm 65. Kentiopsis oliviformis 66. Kerriodoxa elegans 67. Latania loddigesii Blue latan palm 68. Licuala distans 69. Licuala elegans 70. Licuala ramsayi Australian fan palm 71. Neoveitchia storckii 72. Normanbya normanbyi Black palm 73. Phoenix roebelenii Dwarf date palm 74. Pinanga coronata Ivory cane palm 75. Pinanga javana 76. Pinanga maculata Tiger paw palm 77. Polyandrococos caudescens Buri palm 78. Ponapea ledermanniana 79. Pritchardia affinis (Native Big Lou palm Island) 80. Pritchardia beccariana (Native Big Island) 81. Pritchardia hillebrandii (Native Loulou lelo palm Molokai) 82. Pritchardia forbesiana (Native Maui) 83. Ptychosperma cuneatum 84. Ptychosperma furcatum 85. Ptychosperma macarthurii Macarthur palm 86. Ptychosperma watuboho 87. Ravenala madagascariensis Traveler’s palm 88. Ravenea glauca 89. Ravenea hildebrandtii 90. Rhapis excelsa Lady palm 91. Roystonea oleracea Caribbean royal palm 92. Syagrus botryophora 93. Syagrus romanzoffiana Queen palm 94. Syagrus ruschiana 95. Syagrus sancona Colombian foxtail palm 96. Veitchia joannis 97. Veitchia merrillii Manila palm, Christmas palm, Dwarf royal palm 98. Wodyetia bifurcata Foxtail palm 99. Zamia furfuracea Cardboard palm .
Recommended publications
  • Brassiophoenix Schumannii (Palmae)
    100 PRINCIPES tVol. 19 Brassiophoenix schumannii (Palmae) Fnplonrcr B. Esstc L. H. Baitey Hortorium, Cornell [Jnittersity, Ithaca, N' Y' 14853 During the German colonization been determined to be another species "Kaiserwilhelmsland" of (northeastern of the genusBrassiophoenix. New Guinea) in the late 19th Century, Bras,siophoenr,ris distinguished among num- German botanists carried out extensive the ptychospermate Palms bY a The most exploration of their territory and con- ber of unusual characters. tributed substantially to the general distinctive of these is the oddly shaped knowledge of the New Guinea {lora. pinnae. The central pinnae of mature two Unfortunately, most of the German fronds are three-pronged. The pro- palm collections were destroyed in Ber- marginal nerves and midnerve are lin during the second World War. longed and alternate with two deeP Many of these specimens \4ere types o{ praemorse sinuses at the apex. In pinnae new species from New Guinea, and we other ptychospermate genera the (e. g. must now work with photographs and are convexly praemorse Drymo- prae- fragments in order to establish the iden- phloeus), obliquely or concavely g. tity o{ those species. One of them, morseor notched(e. Ptychospermd), (e.5. Actinophloeus schumannii described by or nearly acute at the apex Veit' Beccari in IBB9, has long perplexed bot- chia). of anists who have seen the sPecimens Less conspicuous, but PossiblY the Beccari annotated as belonging in the more diagnostic importance, are species. These ldter annotators have basi{ixed anthers and small, inconspic' identi{ied tlft specimens as belonging to uous pistillode of the staminateflowers. Drymophloeus, Ptychococcus, or as be- In all other ptychospermatepalms, an- ing mixed collections involving these thers are dorsi{ixed and versatile and in two genera and Ptychospertna.
    [Show full text]
  • TAXON:Phoenix Sylvestris SCORE:5.0 RATING:Evaluate
    TAXON: Phoenix sylvestris SCORE: 5.0 RATING: Evaluate Taxon: Phoenix sylvestris Family: Arecaceae Common Name(s): date sugar palm Synonym(s): Elate sylvestris L. (basionym) Indian date silver date palm wild date palm Assessor: No Assessor Status: Assessor Approved End Date: 29 Jul 2014 WRA Score: 5.0 Designation: EVALUATE Rating: Evaluate Keywords: Naturalized, Tropical Palm, Spiny, Dioecious, Bird-dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs
    [Show full text]
  • Arizona Landscape Palms
    Cooperative Extension ARIZONA LANDSCAPE PALMS ELIZABETH D AVISON Department of Plant Sciences JOHN BEGEMAN Pima County Cooperative Extension AZ1021 • 12/2000 Issued in furtherance of Cooperative Extension work acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, James A. Christenson, Director, Cooperative Extension, College of Agriculture and Life Sciences, The University of Arizona. The University of Arizona College of Agriculture and Life Sciences is an equal opportunity employer authorized to provide research, educational information and other services to individuals and institutions that function without regard to sex, race, religion, color, national origin, age, Vietnam Era Veteran's status, or disability. Contents Landscape Use ......................................... 3 Adaptation ................................................ 3 Planting Palms ......................................... 3 Care of Established Palms...................... 5 Diseases and Insect Pests ....................... 6 Palms for Arizona .................................... 6 Feather Palms ........................................... 8 Fan Palms................................................ 12 Palm-like Plants ..................................... 16 This information has been reviewed by university faculty. ag.arizona.edu/pubs/garden/az1121.pdf 2 The luxuriant tropical appearance and stately Adaptation silhouette of palms add much to the Arizona landscape. Palms generally can be grown below the 4000 ft level Few other plants are as striking in low and mid elevation in Arizona. However, microclimate may make the gardens. Although winter frosts and low humidity limit difference between success and failure in a given location. the choices somewhat, a good number of palms are Frost pockets, where nighttime cold air tends to collect, available, ranging from the dwarf Mediterranean Fan should be avoided, especially for the tender species. Palms palm to the massive Canary Island Date palm.
    [Show full text]
  • Winter-Fall Sale 2002 Palm Trees-Web
    Mailing Address: 3233 Brant St. San Diego Ca, 92103 Phone: (619) 291 4605 Fax: (619) 574 1595 E mail: [email protected] Fall/Winter 2002 Palm Price List Tree Citrus 25/+ Band$ 1 gal$ 2 gal$ 3/5 gal$ 7 gal$ 15 gal$ 20 gal$ Box$ Species Pot$ Pot$ gal$ Acanthophoenix crinita $ 30 $ 30-40 $ 35-45 $ 55-65 $ 95 $ 125+ Acanthophoenix rubra $ 35 Acanthophoenix sp. $ 25+ $ 35+ $ 55+ Acoelorrhaphe wrightii $ 15 $ 300 Acrocomia aculeata $ 25+ $ 35 $ 35-45 $ 65 $ 65 $ 100- $ 150+ Actinokentia divaricata 135 Actinorhytis calapparia $ 55 $ 125 Aiphanes acanthophylla $ 45-55 inquire $ 125 Aiphanes caryotaefolia $ 25 $ 55-65 $ 45-55 $ 85 $ 125 Aiphanes elegans $ 20 $ 35 Aiphanes erosa $ 45-55 $ 125 Aiphanes lindeniana $ 55 $ 125 Aiphanes vincentsiana $ 55 Allagoptera arenaria $ 25 $ 40 $ 55 $ 135 Allagoptera campestris $ 35 Alloschmidtia glabrata $ 35 $ 45 $ 55 $ 85 $ 150 $ 175 Alsmithia longipes $ 35+ $ 55 Aphandra natalia $ 35 $ 55 Archontophoenix Alexandrae $ 55 $ 85 $ 125 inquire Archontophoenix Beatricae $ 20 $ 35 $ 55 $ 125 Archontophoenix $ 25 $ 45 $ 65 $ 100 $ 150- $ 200+ $ 310- 175 350 cunninghamiana Archontophoenix maxima $ 25 $ 30 inquire Archontophoenix maxima (Wash River) Archontophoenix myolaensis $ 25+ $ 30 $ 50 $ 75 $ 125 Archontophoenix purpurea $ 30 $ 25 $ 35 $ 50 $ 85 $ 125 $ 300+ Archontophoenix sp. Archontophoenix tuckerii (peach $ 25+ $ 55 river) Areca alicae $ 45 Areca catechu $ 20 $ 35 $ 45 $ 125 Areca guppyana $ 30 $ 45 Areca ipot $ 45 Areca triandra $ 25 $ 30 $ 95 $ 125 Areca vestiaria $ 25 $ 30-35 $ 35-40 $ 55 $ 85-95 $ 125 Arecastrum romanzoffianum $ 125 Arenga australasica $ 20 $ 30 $ 35 $ 45-55 $ 85 $ 125 Arenga caudata $ 20 $ 30 $ 45 $ 55 $ 75 $ 100 Arenga engleri $ 20 $ 60 $ 35 $ 45 $ 85 $ 125 $ 200 $ 300+ Arenga hastata $ 25 www.junglemusic.net Page 1 of 22 Tree Citrus 25/+ Band$ 1 gal$ 2 gal$ 3/5 gal$ 7 gal$ 15 gal$ 20 gal$ Box$ Species Pot$ Pot$ gal$ Arenga hookeriana inquire Arenga micranthe 'Lhutan' $ 20 inquire Arenga pinnata $ 35 $ 50 $ 85 $ 125 Arenga sp.
    [Show full text]
  • Red Ring Disease of Coconut Palms Is Caused by the Red Ring Nematode (Bursaphelenchus Cocophilus), Though This Nematode May Also Be Known As the Coconut Palm Nematode
    1 Red ring disease of coconut palms is caused by the red ring nematode (Bursaphelenchus cocophilus), though this nematode may also be known as the coconut palm nematode. This disease was first described on coconut palms in 1905 in Trinidad and the association between the disease and the nematode was reported in 1919. The vector of the nematode is the South American palm weevil (Rhynchophorus palmarum), both adults and larvae. The nematode parasitizes the weevil which then transmits the nematode as it moves from tree to tree. Though the weevil may visit many different tree species, the nematode only infects members of the Palmae family. The nematode and South American palm weevil have not yet been observed in Florida. 2 Information Sources: Brammer, A.S. and Crow, W.T. 2001. Red Ring Nematode, Bursaphelenchus cocophilus (Cobb) Baujard (Nematoda: Secernentea: Tylenchida: Aphelenchina: Aphelenchoidea: Bursaphelechina) formerly Rhadinaphelenchus cocophilus. University of Florida, IFAS Extension. EENY236. Accessed 11-27-13 http://edis.ifas.ufl.edu/in392 Griffith, R. 1987. “Red Ring Disease of Coconut Palm”. The American Pathological Society Plant Disease, Volume 71, February, 193-196. accessed 12/5/2013- http://www.apsnet.org/publications/plantdisease/ba ckissues/Documents/1987Articles/PlantDisease71n02_193.PDF Griffith, R., R. M. Giblin-Davis, P. K. Koshy, and V. K. Sosamma. 2005. Nematode parasites of coconut and other palms. M. Luc, R. A. Sikora, and J. Bridges (eds.) In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. C.A.B. International, Oxon, UK. Pp. 493-527. 2 The host trees susceptible to the red ring nematode are usually found in the family Palmae.
    [Show full text]
  • The Origin of Monocotyledons from Dicotyledons, Through Self-Adaptation to a Moist
    The Origin of Monocotyledons from Dicotyledons, through Self-adaptation to a Moist. or Aquatic Habit.1 BY G. HENSLOW, M.A., F.L.S., F.G.S., F.R.H.S., V.M.H. CONTENTS. SECTIONS. i PAGE 1. INTRODUCTION . 717 2. Evidences from Geology ........... 718 3. Distribution and Percentages of the Natural Orders of Monocotyledons ns com- pared with those of Dicotyledons . 719 4. Degeneracy of Monocotyledons 720 5. Possible Aquatic Origin.of Palms 723 6. Leaves of Large Size characteristic of many Aquatic Plants .... 734 7. Water-storage Organs ........... 724 8. The Requirement of much Water by many Terrestrial Monocotyledons . 724 9. Cycads and Monocotyledons . 725 10. Monocotyledonous Dicotyledons . • 727 11. The Effects of Water upon Roots 731 12. Origin of the formerly called 'Endogenous' Arrangement of the Cauline Bundles of Monocotyledons . ........ 73a 13. The Forms and Structure of Aquatic Leaves are the Result of the Direct Action of Water -735 14. The Reticulated Venation of some Monocotyledons is only imitative of that of Dicotyledons 736 15. Reproductive Organs ............ 737 16. Cytological and Embryological Investigations 738 17. Speculations on the Arrest of one Cotyledon ....... 74° 18. Non-inheritance, Imperfect and Complete Inheritance, of Acquired Characters . 741 19. Isolation and Natural Selection 743 20. CONCLUSION 743 1. INTRODUCTION. EARLY twenty years ago (1892), I pointed out that there is a large N number of coincidences between the morphological and anatomical characters of Monocotyledons and Aquatic Dicotyledons, sufficient, in fact, to justify the conception that the former class had been evolved from the latter. Beyond a limited extent in experiments upon adaptation, the 1 Supplementary Observations and Experiments to ' A Theoretical Origin of Endogens from Exogens, through Self-adaptation to an Aquatic Habit'.
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • TAXON:Rhopalostylis Baueri SCORE:-2.0 RATING:Low Risk
    TAXON: Rhopalostylis baueri SCORE: -2.0 RATING: Low Risk Taxon: Rhopalostylis baueri Family: Arecaceae Common Name(s): Norfolk Island palm Synonym(s): Areca baueri Hook. f. ex Lem. Eora(basionym) baueri (H. Wendl. & Drude) O. F. RhopalostylisCook cheesemanii Becc. ex Cheeseman Assessor: No Assessor Status: Assessor Approved End Date: WRA Score: -2.0 Designation: L Rating: Low Risk Keywords: Subtropical Palm, Unarmed, Shade-tolerant, Thicket-forming, Bird-dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier
    [Show full text]
  • A Pharmacological and Medicinal Study of Areca Palm and Nuts: an Overview
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences A Pharmacological And Medicinal Study Of Areca Palm And Nuts: An Overview. Shashank Tiwari1*, and Shreya Talreja2. 1Director, JP College of Pharmacy, Lucknow, UP, India. 2Lecturer, JP College of Pharmacy, Lucknow, UP, India. ABSTRACT Areca palm is a perennial evergreen multipurpose tree. It’s belonging to Arecaceae Family. The plant possess many medicinal and pharmacological properties it is widely used in ancient times in Ayurveda, Indian system of medicine. It is widely used in India as a addictive substance for chewing purpose after nicotine, alcohol, tobacco in the world. The plant parts ( leaves, fruit, root, seed/nut) contains many major bioactive compounds such as poly-phenolic compound, alkaloids (arecoline), flavonoids, tannins, protein, fibre, fats etc. which is beneficial for medicinal value for treat and cure various diseases /disorders such as Diabetes, GI diseases, ulcer preventive, Heart diseases, CNS disorder (Depression, seizures), and also exhibit various pharmacological activities includes anti-inflammatory, anti-protozoal, anti-oxidant, anti-allergic, wound healing activity etc and the extract of areca palm and its nuts also useful for preparation of many natural medicinal and cosmetic products. The main aim of this review was to promote or discover the knowledge about this multipurpose plant and its medicinal importance. Keywords: - Areca Palm, Areca nut, Pharmacological activity, medicinal use. https://doi.org/10.33887/rjpbcs/2020.11.5.12 *Corresponding author September – October 2020 RJPBCS 11(5) Page No. 100 ISSN: 0975-8585 INTRODUCTION Areca Palm is commonly known as betel palm, catechu tree/palm, supari palm, Areca catechu or Dypsis lutescens tree etc and the tree fruit/ seed is commonly known as areca nut, betel nut or supari.
    [Show full text]
  • Las Palmeras En El Marco De La Investigacion Para El
    REVISTA PERUANA DE BIOLOGÍA Rev. peru: biol. ISSN 1561-0837 Volumen 15 Noviembre, 2008 Suplemento 1 Las palmeras en el marco de la investigación para el desarrollo en América del Sur Contenido Editorial 3 Las comunidades y sus revistas científicas 1he scienrific cornmuniries and their journals Leonardo Romero Presentación 5 Laspalmeras en el marco de la investigación para el desarrollo en América del Sur 1he palrns within the framework ofresearch for development in South America Francis Kahny CésarArana Trabajos originales 7 Laspalmeras de América del Sur: diversidad, distribución e historia evolutiva 1he palms ofSouth America: diversiry, disrriburíon and evolutionary history Jean-Christopbe Pintaud, Gloria Galeano, Henrik Balslev, Rodrigo Bemal, Fmn Borchseníus, Evandro Ferreira, Jean-Jacques de Gran~e, Kember Mejía, BettyMillán, Mónica Moraes, Larry Noblick, FredW; Staufl'er y Francis Kahn . 31 1he genus Astrocaryum (Arecaceae) El género Astrocaryum (Arecaceae) . Francis Kahn 49 1he genus Hexopetion Burret (Arecaceae) El género Hexopetion Burret (Arecaceae) Jean-Cbristopbe Pintand, Betty MiJJány Francls Kahn 55 An overview ofthe raxonomy ofAttalea (Arecaceae) Una visión general de la taxonomía de Attalea (Arecaceae) Jean-Christopbe Pintaud 65 Novelties in the genus Ceroxylon (Arecaceae) from Peru, with description ofa new species Novedades en el género Ceroxylon (Arecaceae) del Perú, con la descripción de una nueva especie Gloria Galeano, MariaJosé Sanín, Kember Mejía, Jean-Cbristopbe Pintaud and Betty MiJJán '73 Estatus taxonómico
    [Show full text]
  • Seed Geometry in the Arecaceae
    horticulturae Review Seed Geometry in the Arecaceae Diego Gutiérrez del Pozo 1, José Javier Martín-Gómez 2 , Ángel Tocino 3 and Emilio Cervantes 2,* 1 Departamento de Conservación y Manejo de Vida Silvestre (CYMVIS), Universidad Estatal Amazónica (UEA), Carretera Tena a Puyo Km. 44, Napo EC-150950, Ecuador; [email protected] 2 IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; [email protected] 3 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923219606 Received: 31 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Fruit and seed shape are important characteristics in taxonomy providing information on ecological, nutritional, and developmental aspects, but their application requires quantification. We propose a method for seed shape quantification based on the comparison of the bi-dimensional images of the seeds with geometric figures. J index is the percent of similarity of a seed image with a figure taken as a model. Models in shape quantification include geometrical figures (circle, ellipse, oval ::: ) and their derivatives, as well as other figures obtained as geometric representations of algebraic equations. The analysis is based on three sources: Published work, images available on the Internet, and seeds collected or stored in our collections. Some of the models here described are applied for the first time in seed morphology, like the superellipses, a group of bidimensional figures that represent well seed shape in species of the Calamoideae and Phoenix canariensis Hort. ex Chabaud.
    [Show full text]
  • The Exotic Palm Roystonea Oleracea (Jacq.) of Cook As a Rural Biotype
    Revista da Sociedade Brasileira de Medicina Tropical 47(5):642-645, Sep-Oct, 2014 Short Communication http://dx.doi.org/10.1590/0037-8682-0221-2013 The exotic palm Roystonea oleracea (Jacq.) O.F. Cook as a rural biotype for Rhodnius neglectus Lent, 1954, in Caçu, State of Goiás Elisa Neves Vianna[1],[2], Andrey José de Andrade[3], Fernando Braga Stehling Dias[2] and Liléia Diotaiuti[2] [1]. Programa de Pós-Graduação em Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG. [2]. Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG. [3]. Faculdade de Medicina, Universidade de Brasília, Brasília, DF. ABSTRACT Introduction: Rhodnius neglectus is a triatomine that colonizes different palm species. In this study, we aimed to describe the presence of this triatomine bug in the royal palms (Roystonea oleracea) in a rural region of the State of Goiás. Methods: Palm infestation was investigated by dissecting the palms or by using live-bait traps. Results: Two palm trees were infested by R. neglectus negative for Trypanosoma cruzi, the etiological agent for Chagas disease. In the study area, R. neglectus is frequently found in households. Conclusions: The adaptation of this species to palm trees introduced in Brazil for landscaping purposes poses another challenge for controlling the vectors of Chagas disease. Keywords: Triatomine bugs. Infestation. Palm trees. Rhodnius neglectus Lent, 1954 (Hemiptera, Triatominae) is palm trees such as gueiroba (Syagrus oleracea) and bacuri a triatomine bug that mainly inhabits palm trees in the Brazilian (Attalea phalerata) are widely found close to dwellings in this Savanna1-3, Pantanal, and Caatinga biomes4.
    [Show full text]