DJI Government Edition UAS Data Management Assurance Flight Test and Evaluation Report

Total Page:16

File Type:pdf, Size:1020Kb

DJI Government Edition UAS Data Management Assurance Flight Test and Evaluation Report Flight Test and Technical Evaluation Report DJI Unmanned Aircraft System (UAS) Mission Functionality and Data Management Assurance Assessment U.S. Department of the Interior Office of Aviation Services Boise, Idaho by Mark L Bathrick Brad Koeckeritz July 2, 2019 This Flight Test and Technical Evaluation Report presents results of an assessment of the flight, payload, and data management assurance performance of the SZ DJI Technology Co., Ltd. Matrice 600 Pro and Mavic Pro unmanned aircraft systems (UAS) modified with DJI Government Edition (GE) hardware, firmware, and software for suitability in selected Interior bureau missions. Test articles were operated under the Office of Aviation Services (OAS) Test Plan for Validation and Verification of Data Security Software for Employment of DJI UAS Platforms, originally signed on April 9, 2018 and later updated with approved Modifications One and Two of November 14 and 16, 2018, respectively. APPROVED FOR RELEASE: Mark L Bathrick, Director Page 1 of 53 SUMMARY In 2014, following four years of unmanned aircraft systems (UAS) operational test and evaluation (OT&E), the U.S. Department of the Interior’s (DOI) Office of Aviation Services (OAS) and over 300 subject matter experts from DOI bureaus developed the Master UAS Requirements for the DOI. In 2015, while conducting UAS market research, OAS determined the privacy policy of the largest provider of UAS in the U.S. (SZ DJI Technology Co., Ltd) did not meet UAS data management assurance standards contained in the Master UAS Requirements for the DOI. Specifically, they did not meet DOI’s requirement to be able “to decline and lock out any device information sharing including telemetry through aircraft, software or applications preventing any automated uploads or downloads.” In 2016, Interior awarded its first contract for fleet small UAS to a U.S. based company whose aircraft met all relevant technical and DOI bureau price requirements. Shortly thereafter, the company (3D Robotics) ceased manufacturing of UAS as a result of market competition. Subsequent OAS market research to identify additional UAS to meet Interior bureaus’ growing demand for inexpensive and highly capable aircraft indicated the remaining UAS available from U.S. based companies were up to 10X less capable for the same price, or up to 10X more costly than similarly capable DJI aircraft. OAS immediately began working with Interior and federal partners and the drone industry to identify, develop, and field potential solutions that met Interior’s three data management and risk mitigation requirements listed in the Master UAS Requirements for the DOI. In 2017, working with the Department of Defense (DOD), OAS identified a potential solution and began developing a flight test plan to assess the suitability of this solution across a range of DOI bureau UAS missions. In 2017, OAS was also approached by DJI with an offer to collaborate on the development, testing and potential fielding of a customer-focused enterprise solution that would meet Interior’s UAS data management and risk mitigation requirements for enterprise level managed data sharing controls. Draft specifications for the new “Private Edition” (later referred to as “Government Edition” - GE) included custom software, firmware, and UAS hardware editions for two specific Interior selected DJI drones (Matrice 600 Pro, Mavic Pro). Provisions to include flight testing of GE equipped DJI aircraft were later added to the flight test plan. Additionally, OAS collaborated with one industry and two federal partners with expertise in data management assurance testing to conduct targeted assessments of GE hardware, firmware, and software. While the DOD solution was secure, it provided insufficient mission functionality for DOI bureaus’ complex photogrammetry, mapping, etc. mission data requirements. Flight testing of earlier versions of GE identified functional issues that were remedied in later versions. Partner led data management assurance tests of each GE version met required security exit criteria. It is recommended GE (Pilot App version 1.3 19743, Assistant 2 GE Version 9-5) equipped Matrice 600 Pro and Mavic Pro aircraft be authorized for Interior fleet and contract use in accordance with additional risk mitigation practices developed by OAS (Appendices A, B). While the tested GE version met Interior requirements, the necessity to test and validate future GE updates to ensure continued security makes this solution time- consuming and costly to maintain and scale; not a suitable long term solution. Continued collaboration with federal and industry partners to identify additional solutions that meet DOI data management assurance requirements and are easier and less costly to sustain and scale is also recommended. Secure Agile Scalable Page 2 of 53 TABLE OF CONTENTS BACKGROUND 4 UAS DATA MANAGEMENT AND RISK MANAGEMENT REQUIREMENTS 6 DOI UAS DATA MANAGEMENT RISK MITIGATION STRATEGY 6 PURPOSE 9 TEST EQUIPMENT- HARDWARE, FIRMWARE, SOFTWARE AND APPLICATIONS 9 SCOPE OF TESTS 10 TEST OBJECTIVES 10 TEST PHASES AND EXIT CRITERIA STANDARDS 11 FUNCTIONAL AND MISSION FLIGHT TESTING PHASES 11 DATA MANAGEMENT ASSURANCE TESTS AND EXIT CRITERIA 15 ADDITIONAL DATA MANAGEMENT ASSURANCE RISK MITIGATION MEASURES EMPLOYED 17 TEST ENVELOPE 17 TEST CONFIGURATIONS AND LOADING 18 METHOD OF TESTS 18 TEST METHODS AND PROCEDURES 18 CHRONOLOGY 19 RESULTS AND DISCUSSION 19 TEST RESULTS - AS RELATED TO THE OBJECTIVES AND THE MISSION 19 CONCLUSIONS 21 RECOMMENDATIONS 22 ABOUT THE AUTHORS 23 REFERENCES 24 APPENDICES 24 Note: For readers viewing this report electronically, embedded hyperlinks found throughout the report provide access to additional background and reference information. Page 3 of 53 INTRODUCTION BACKGROUND The U.S. Department of the Interior (DOI) is the largest land steward in the United States, responsible for management of 500M acres (~1 in 5) across the U.S and its territories and 1.7B acres on the Outer Continental Shelf. DOI manages resources that supply 30 percent of the Nation’s energy supplies, manages water in 17 Western States and supplies 15 percent of the Nation’s hydropower energy. The “people’s land,” which DOI manages on behalf of the American Taxpayer annually hosts more than 450M visits annually. In carrying out its extensive responsibilities on behalf of the American Public, DOI utilizes a wide variety of aircraft, including unmanned aircraft systems (UAS, aka drones). DOI missions, often conducted in remote areas, severe terrain, and weather conditions can be hazardous to personnel. These missions often require persistent presence and responsive deployment to address emergent events (e.g. wildfires, earthquakes, volcanos, floods, animal migrations, search and rescues, etc.). Mission goals include conducting them with no/minimal disturbance to native species and visitors to the lands that DOI stewards, while making the best use of appropriated funds to fulfill its chartered obligations for managing the “people’s land.” Since the initiation of DOI’s current UAS program in 2006, the Department has realized significant benefits from the safe and responsible integration of drone technology. DOI is a recognized leader in the non-military government use of unmanned aircraft systems for a variety of missions with over 600 available drones and 400 FAA certified and DOI trained operators distributed across 42 states and territories assigned to seven of Interior’s nine bureaus. Since 2010 when Interior began employing UAS in operational missions, the Department has successfully flown over 19,000 UAS flights, with zero public complaints. In 2018, the DOI UAS program continued its tradition of innovation, collaboration, and leadership in the drone space. Adoption and integration of UAS in missions by DOI’s nine bureaus continued to grow with 10,342 UAS flights conducted across more than 25 mission applications in 42 States and U.S. Territories in 2018; a 108% increase in DOI UAS flights over 2017’s record setting year. This included 86 flights and 382 flight hours flown in six states, supporting 16 wildfires, by commercial companies on DOI’s first UAS services call-when-needed contract. Page 4 of 53 Figure 1 – DOI Annual UAS Flight Activity Interior is also recognized as the government leader in cost-effective development and management of its unmanned aircraft systems program. Notable accomplishments in this area include: 1. Interior’s Office of Aviation Services (OAS) developed and oversees Interior’s award-winning UAS program with no additional personnel or funding. 2. All DOI’s approximately 400 FAA certified and DOI trained UAS operators came from current employees; no new hires. 3. DOI leveraged approximately $25M in excess Department of Defense small UAS during a four year operational test and evaluation (OT&E) program that was used to inform the development of DOI’s Master UAS Requirements document. Interior is the only federal agency with published UAS requirements available online to the public. 4. DOI’s entire fleet of >600 fleet UAS cost less than several of the single aircraft in Interior’s 93 aircraft manned fleet, averaging about $3,600 per UAS. 5. In 2018, DOI UAS use on 543 unique projects saved an estimated $14.8M over the cost of traditional ground based methods of accomplishing these projects. Finally, Interior is also a recognized leader in UAS program transparency, privacy, and data security. The Interior Office of Aviation Services public UAS webpages contain over 200 separate technical reports, presentations,
Recommended publications
  • MPP System Control Module User Guide /V1.0 Nulllindeni Nulllindeni Nulllindeni Nulllindeni Nulllindeni Nulllindeni Nulllindeni Nulllindeni
    nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni MPP System Control Module User Guide /V1.0 nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni Document version:V1.0 Release Date:2017.4.13 nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni Copyright © Zhuhai Allwinner Technology Co., Ltd. 2018. All rights reserved. No part or all of the contents of this document may be copied or reproduced without the written permission of the company, and may not be used.What form of communication. nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni nulllindeni Trademark statement 、Allwinner and other Allwinner trademarks are trademarks of Zhuhai Allwinner Technology Co., Ltd.All other trademarks or registered trademarks mentioned in this document are the property of their respective owners. Note The products, services or features you purchase are subject to the terms and conditions of the company and all or part of the products, services or features described in this document may not be covered by your purchase or use. Unless otherwise agreed by the contract, Allwinner Company makes no representations or warranties, nulllindeni expressnulllindenior implied, regarnulllindeniding the contentsnulllindeniof this document.nulllindeni nulllindeni nulllindeni nulllindeni The contents of this document
    [Show full text]
  • Detective 11.0 October 2018
    OXYGEN FORENSIC® DETECTIVE 11.0 OCTOBER 2018 USE NEW WHATSAPP EXTRACTION METHOD AQCUIRE IOT DEVICES WhatsApp is without doubt the most popular messenger Digital assistants are already a part of everyday life and in the world with over 1.5 billion users globally. Thus, have been successfully used to solve several crimes. extracting complete WhatsApp content from all possible Oxygen Forensic® Detective v.11 brings support for the sources is essential for any investigation. two most popular digital assistants – Amazon Alexa and Google Home. Commonly used methods of WhatsApp data acquisition involve extracting data from mobile devices and their You can access Amazon Alexa cloud using a username cloud backups. Oxygen Forensic® Detective v.11 and password or token. A token can be found on the introduces an industry-first alternative method of device’s associated computer with Oxygen Forensic® WhatsApp data extraction. KeyScout and used in Cloud Extractor. The software acquires a complete evidence set from Amazon Alexa, In the new software version, you can access complete including account and device details, contacts, messages, WhatsApp data by scanning a QR code from a mobile calendars, notifications, lists, activities, skills, etc. app or using the WhatsApp token from a PC. This token can be extracted by our KeyScout utility from the Google Home data can be extracted via Google WhatsApp desktop app or from desktop Web browsers. username/password or a master token found in mobile devices. Extracted Google Home data includes account Once data is extracted, you will be able to download and device details, voice commands, and information WhatsApp communications from the subject’s account about users.Google Home data can also be acquired from any time later when an investigation requires by using a the Google Home mobile app on Apple iOS and Android specially generated WhatsApp QR token available in the devices.
    [Show full text]
  • CHINA DAILY for Chinese and Global Markets
    OLD MOBILES CHANCE RELATIONS LOTUS FROM SPACE Outlining the high stakes Flower seeds made Showroom opening to attract > p13 in future China-US ties a tour beyond Earth buyers of hand-assembled cars > ACROSS AMERICA, PAGE 2 > CHINA, PAGE 7 WEDNESDAY, June 19, 2013 chinadailyusa.com $1 The ‘Long March’ to Tinseltown By LIU WEI in shanghai “It is a long way to go,” he [email protected] says, “but I believe as the Chi- nese = lm market keeps growing The next Kung Fu Panda so fast, it is totally possible that will be the brainchild of both Chinese capital will hold shares American and Chinese film- in the major six Hollywood stu- makers and production will dios. It is just a matter of time.” start in August, says Peter Li, China’s Wanda Cultural managing director of China Group is one of the pioneers Media Capital, co-investor of in this process. In 2012 Wanda Oriental DreamWorks, a joint acquired AMC, the second venture with DreamWorks largest theater chain in North Animation. America, for $2.6 billion. CMC co-founded Oriental What Ye Ning, the group’s DreamWorks in 2012 with vice-president, has learned DreamWorks, Shanghai Media from the following integration Group and Shanghai Alliance is, = rst of all, trust and respect. Investment, with the aim of “The managing team of CHARACTER BUILDING producing and distributing ani- AMC was worried that we mated and live-action content would send a group of yellow PHOTO BY SUN CHENBEI / CHINA DAILY for Chinese and global markets. faces to replace them,” Ye says, From le : Li Xiaolin, president
    [Show full text]
  • Reconstructing Urban Memory of the Wenxi Fire Haoran Chang Figure 1 Photogrammetry Model
    Photogrammetry and Zhongshan Pavilion: Reconstructing Urban Memory of the Wenxi Fire Haoran Chang Figure 1 Photogrammetry model of Zhongshan Pavilion. Image courtesy of the artist. In line with the government’s scorched-earth policy, on November 12, 1938, a devastating fire was started in the city of Changsha, China. This military strategy calls for the intentional burning and destruction of all valuable resources, such as buildings, food, and transportation infrastructure, to prevent the invading enemy Refract | Volume 3 Issue 1 242 from utilizing them. During the Second Sino-Japanese War (1937–1945), the gov- ernor of Changsha followed instructions from the Nationalist government to exe- cute this scorched-earth policy. Yet officials mistakenly initiated the fire too quickly and destroyed the more-than-three-thousand-year-old city. In this fire, thousands of people lost their lives, and the majority of the city’s buildings were destroyed. Referred to today as the Changsha Fire of 1938, or the Wenxi Fire, this event left Changsha one of the most damaged cities during World War II, along- side Stalingrad, Hiroshima, and Nagasaki.1 Zhongshan Pavilion is one of the few architectural structures that survived the 1938 Wenxi Fire. As technology widely applied in cultural preservation, pho- togrammetry can play a significant role in preserving this structure for future gen- erations. Yet this project intends to further the conversation about the role of photogrammetry in memory preservation by considering the Zhongshan Pavilion as a heterogeneous site. The resulting virtual 3-D model opens new potentialities in challenging historical narratives that are told in the singular voice (the state’s) as presented at the physical site in Changsha.
    [Show full text]
  • User Manual V1.4
    SPARK User Manual V1.4 2017.07 Searching for Keywords Search for keywords such as “battery” and “install” to find a topic. If you are using Adobe Acrobat Reader to read this document, press Ctrl+F on Windows or Command+F on Mac to begin a search. Navigating to a Topic View a complete list of topics in the table of contents. Click on a topic to navigate to that section. Printing this Document This document supports high resolution printing. Using this Manual Legends Warning Important Hints and Tips Reference Read Before the First Flight Read the following documents before using the SPARKTM: 1. Spark in the Box 2. Spark User Manual 3. Spark Quick Start Guide 4. Spark Disclaimer and Safety Guidelines 5. Spark Intelligent Flight Battery Safety Guidelines We recommend that you watch all tutorial videos on the official DJITM website and read the Disclaimer before you fly. Prepare for your first flight by reviewing the Spark Quick Start Guide and refer to the User Manual for more details. Video Tutorials Go to the address below or scan the QR code on the right to watch the Spark tutorial videos, which demonstrate how to use Spark safely: http://www.dji.com/spark/info#video Download the DJI GO 4 App Be sure to use the DJI GOTM 4 app or other apps compatible with DJI aircraft during flight. Scan the QR code on the right to download the latest version. The Android version of the DJI GO 4 is compatible with Android v4.4 or later. The iOS version of the DJI GO 4 is compatible with iOS v9.0 or later.
    [Show full text]
  • TECHNOLOGY and INNOVATION REPORT 2021 Catching Technological Waves Innovation with Equity
    UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT TECHNOLOGY AND INNOVATION REPORT 2021 Catching technological waves Innovation with equity Geneva, 2021 © 2021, United Nations All rights reserved worldwide Requests to reproduce excerpts or to photocopy should be addressed to the Copyright Clearance Center at copyright.com. All other queries on rights and licences, including subsidiary rights, should be addressed to: United Nations Publications 405 East 42nd Street New York, New York 10017 United States of America Email: [email protected] Website: https://shop.un.org/ The designations employed and the presentation of material on any map in this work do not imply the expression of any opinion whatsoever on the part of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication has been edited externally. United Nations publication issued by the United Nations Conference on Trade and Development. UNCTAD/TIR/2020 ISBN: 978-92-1-113012-6 eISBN: 978-92-1-005658-8 ISSN: 2076-2917 eISSN: 2224-882X Sales No. E.21.II.D.8 ii TECHNOLOGY AND INNOVATION REPORT 2021 CATCHING TECHNOLOGICAL WAVES Innovation with equity NOTE Within the UNCTAD Division on Technology and Logistics, the STI Policy Section carries out policy- oriented analytical work on the impact of innovation and new and emerging technologies on sustainable development, with a particular focus on the opportunities and challenges for developing countries. It is responsible for the Technology and Innovation Report, which seeks to address issues in science, technology and innovation that are topical and important for developing countries, and to do so in a comprehensive way with an emphasis on policy-relevant analysis and conclusions.
    [Show full text]
  • Report No. DODIG-2019-106: (U) Audit of the Dod's Management of the Cybersecurity Risks for Government Purchase Card Purchas
    Report No. DODIG-2019-106 SECRET//NOFORN ēĘĕĊĈęĔė ĊēĊėĆđ U.S. Department of Defense July 26, 2019 (U) Audit of the DoD’s Management of the Cybersecurity Risks for Government Purchase Card Purchases of Commercial Off-the-Shelf Items Classified By: Carol N. Gorman Derived From: DoD Inspector General Action Memorandum, “Cybersecurity Vulnerabilities Identified During the Audit of the DoD’s Implementation of Cybersecurity Controls for Unmanned Aerial Vehicle Systems” Declassify On: 50X1-HUM INTEGRITY /EWEE EXCELLENCE SECRET//NOFORN SECRET//NOFORN SECRET//NOFORN SECRET//NOFORN (U) Results in Brief (U) Audit of the DoD’s Management of the Cybersecurity Risks for Government Purchase Card Purchases of Commercial Off-the-Shelf Items July 26, 2019 (U) Findings (U//FOUO) We determined that the DoD purchased (U) Objective and used COTS information technology items with (U) We determined whether the DoD assessed and known cybersecurity risks. Specifically, Army and mitigated cybersecurity risks when purchasing Air Force GPC holders purchased at least $32.8 million commercial off-the-shelf (COTS) information technology of COTS information technology items, such as Lenovo items. Although we primarily focused on Government computers, Lexmark printers, and GoPro cameras, purchase card (GPC) purchases, we also assessed risks with known cybersecurity vulnerabilities in FY 2018. affecting traditional acquisition processes. In addition, we identified that the (U) Background . (U) The DoD purchases and uses a wide variety of COTS information technology items,
    [Show full text]
  • Tvuanywheretm
    TVU Networks® TVU Anywhere TM Quick Start TVU Anywhere App User Guide iOS, Mac, and Android device support Document Part Number: TVUAnywhere QSUG Rev C EN 06-2020 Legal notices FCC/CE Compliance TVU®, TVU Networks®, TVU networks®, and TVUPack®, TVU Grid®, Federal Communications Commission (FCC) Regulation of TVU One®, TVU Era®, TVU CAS™, TVU Me™, TVU Anywhere™, TVU Electronic News Gathering (ENG) Mobile Systems MLink™, TVU RPS™, TVU Dashboard™, TVU MediaMind™, and The FCC provides specific policies and procedures related to TVU Sports™ are trademarks of TVU Networks Corporation and/ radio frequency (RF) emissions in mobile and portable devices. or its affiliates in the United States and/or other countries. The FCC outlines test requirements and specific test procedures Verizon® is a trademark of Verizon Communications, Inc., AT&T® based on the type of device. These test requirements and proce- is a registered trademark of AT&T, Inc. Huawei® is a registered dures can also cover Specific Absorption Rates (SAR) for RF. trademark of Huawei Technologies Co. Ltd., and Velcro® is TVU transmitter devices have always conformed to all appli- a registered trademark of Velcro Industries, B.V. App Store®, cable FCC regulations covering mobile systems for electronic Apple App Store®, iPhone®, iPad®, iPod touch® are trademarks of news gathering. All required tests for TVU transmitter devices Apple® Inc. All other trademarks are the property of their respec- as outlined in the regulations were performed by a third-party tive owner. testing lab, which issued a certificate of compliance for TVU Photographs are the copyright of their respective owners.
    [Show full text]
  • Technologies for Integration of Small Unmanned Aircraft Systems (S-UAS) in National Airspace System Matthew Dechering Manish Kumar Contents
    Technologies for Integration of small Unmanned Aircraft Systems (s-UAS) in National Airspace System Matthew Dechering Manish Kumar Contents 1. Introduction 2. Technology Survey 3. Existing Solutions 4. Operational Requirements for Urban Air Mobility 5. Solutions for Urban Air Mobility 6. Ongoing/Future Work 7. Conclusions Introduction: Small Unmanned Aircraft Systems (s-UAS) • s-UAS have generated a lot of interest in civilian domains: – Emergency Management, Law Enforcement, Infrastructure Inspection, Package Delivery, Imaging/surveillance • The FAA expects between 162% and 432% growth in number of unmanned flights by 2021 • Low end estimate of 2.75 Million units in the air by 2021, up from 1.10 million units Concept – The UTM Problem • A futuristic notional scenario of UAS usage in National Airspace System consists of a large number of UAS operating in crowded airspace – Safety and reliability issues in autonomous operations – Beyond Visual Line of Sight (BVLOS) operations risky • Objectives of UTM: maintain safe separation with other manned/ unmanned aircraft to avoid collisions while fulfilling UAS mission • Challenges: involves integration and development in several technological areas: – Computation – algorithms for collision-free path planning, tracking of UAS – Sensing - onboard and off-board to obtain situational picture of environment Source: FAA drone vision- http://www.airtrafficmanagement.net/ – Communication – enable information sharing 4 Concept – UTM Requirements • Mission planning – Allows users to request, specify and
    [Show full text]
  • Qualcomm® Quick Charge™ Technology Device List
    One charging solution is all you need. Waiting for your phone to charge is a thing of the past. Quick Charge technology is ® designed to deliver lightning-fast charging Qualcomm in phones and smart devices featuring Qualcomm® Snapdragon™ mobile platforms ™ and processors, giving you the power—and Quick Charge the time—to do more. Technology TABLE OF CONTENTS Quick Charge 5 Device List Quick Charge 4/4+ Quick Charge 3.0/3+ Updated 09/2021 Quick Charge 2.0 Other Quick Charge Devices Qualcomm Quick Charge and Qualcomm Snapdragon are products of Qualcomm Technologies, Inc. and/or its subsidiaries. Devices • RedMagic 6 • RedMagic 6Pro Chargers • Baseus wall charger (CCGAN100) Controllers* Cypress • CCG3PA-NFET Injoinic-Technology Co Ltd • IP2726S Ismartware • SW2303 Leadtrend • LD6612 Sonix Technology • SNPD1683FJG To learn more visit www.qualcomm.com/quickcharge *Manufacturers may configure power controllers to support Quick Charge 5 with backwards compatibility. Power controllers have been certified by UL and/or Granite River Labs (GRL) to meet compatibility and interoperability requirements. These devices contain the hardware necessary to achieve Quick Charge 5. It is at the device manufacturer’s discretion to fully enable this feature. A Quick Charge 5 certified power adapter is required. Different Quick Charge 5 implementations may result in different charging times. Devices • AGM X3 • Redmi K20 Pro • ASUS ZenFone 6* • Redmi Note 7* • Black Shark 2 • Redmi Note 7 Pro* • BQ Aquaris X2 • Redmi Note 9 Pro • BQ Aquaris X2 Pro • Samsung Galaxy
    [Show full text]
  • Free-Flight Mapping with Dji Spark
    Free‐Flight Mapping: Pix4Dcapture & dji Spark Jerry Davis, SFSU Institute for Geographic Information Science The best way to do mapping is using a GPS‐guided grid pattern programmed by an app like Tower or Pix4Dcapture to ensure reliable coverage with suitable overlap, and with little user input needed during the flight. But what do you do if GPS is not reliable, such as under forest canopy, in deep canyons, or maybe in urban canyons with tall buildings degrading GPS signal? Free‐ flight mapping may be the only choice under these conditions. This guide provides a method that will work for the dji Spark, which is a light‐weight drone easily flown without GPS with a perfectly capable camera on a gimbal, but it doesn't accept a flight plan. Its obstacle avoidance, visual positioning and propeller guards make it safe flying in difficult locations with limited GPS signal. The same method could be applied to other drones that can be flown manually. Note: not described here, but you'll also need to survey in ground control points; the photos don't have accurate GPS tags. One challenging mapping task is along stream corridors where riparian canopy can be very dense. These sites can be very difficult and in the coastal selva environments we commonly encounter (e.g. in streams in San Mateo County) the vegetation can often be so dense that it's difficult to envision doing any drone‐based mapping. However many of these creeks with mature riparian canopies can be open enough below canopy to allow drone flights if we can accurately control the aircraft.
    [Show full text]
  • Arxiv:2008.10631V2 [Cs.RO] 10 Mar 2021
    OpenBot: Turning Smartphones into Robots Matthias Muller¨ 1 and Vladlen Koltun1 Abstract— Current robots are either expensive or make significant compromises on sensory richness, computational power, and communication capabilities. We propose to leverage smartphones to equip robots with extensive sensor suites, pow- erful computational abilities, state-of-the-art communication channels, and access to a thriving software ecosystem. We design a small electric vehicle that costs $50 and serves as a robot body for standard Android smartphones. We develop a software stack that allows smartphones to use this body Fig. 1. OpenBots. Our wheeled robots leverage a smartphone for sensing for mobile operation and demonstrate that the system is and computation. The robot body costs $50 without the smartphone. The sufficiently powerful to support advanced robotics workloads platform supports person following and real-time autonomous navigation in such as person following and real-time autonomous navigation unstructured environments. in unstructured environments. Controlled experiments demon- strate that the presented approach is robust across different tooth, 4G modems, and more. Modern smartphones are even smartphones and robot bodies. equipped with dedicated AI chips for neural network infer- I. INTRODUCTION ence, some of which already outperform common desktop processors [10]. Robots are expensive. Legged robots and industrial ma- We develop and validate a design for a mobile robot nipulators cost as much as luxury cars, and wheeled mobile that leverages a commodity smartphone for sensing and robots such as the popular Husky A200 still cost $20K. Even computation (Figure1). The smartphone acts as the robot’s the cheapest robots from Boston Dynamics, Franka Emika or brain and sensory system.
    [Show full text]