Memristive Systems Analysis of 3-Terminal Devices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Memristive Devices for Computing J
REVIEW ARTICLE PUBLISHED ONLINE: 27 DECEMBER 2012 | DOI: 10.1038/NNANO.2012.240 Memristive devices for computing J. Joshua Yang1, Dmitri B. Strukov2 and Duncan R. Stewart3 Memristive devices are electrical resistance switches that can retain a state of internal resistance based on the history of applied voltage and current. These devices can store and process information, and offer several key performance characteristics that exceed conventional integrated circuit technology. An important class of memristive devices are two-terminal resistance switches based on ionic motion, which are built from a simple conductor/insulator/conductor thin-film stack. These devices were originally conceived in the late 1960s and recent progress has led to fast, low-energy, high-endurance devices that can be scaled down to less than 10 nm and stacked in three dimensions. However, the underlying device mechanisms remain unclear, which is a significant barrier to their widespread application. Here, we review recent progress in the development and understanding of memristive devices. We also examine the performance requirements for computing with memristive devices and detail how the outstanding challenges could be met. he search for new computing technologies is driven by the con- excellent review articles8–19. Here, we focus on the chemical and phys- tinuing demand for improved computing performance, but ical mechanisms of memristive devices, and try to identify the key Tto be of use a new technology must be scalable and capable. issues that impede the commercialization of memristors as computer Memristor or memristive nanodevices seem to fulfil these require- memory and logic. ments — they can be scaled down to less than 10 nm and offer fast, non-volatile, low-energy electrical switching. -
Navaraj, William Ringal Taube (2019) Inorganic Micro/Nanostructures- Based High-Performance Flexible Electronics for Electronic Skin Application
Navaraj, William Ringal Taube (2019) Inorganic micro/nanostructures- based high-performance flexible electronics for electronic skin application. PhD thesis. https://theses.gla.ac.uk/40973/ This work is made available under the Creative Commons Attribution- NonCommercial 4.0 License: https://creativecommons.org/licenses/by- nc/4.0/ Enlighten: Theses https://theses.gla.ac.uk/ [email protected] Inorganic Micro/Nanostructures-based High-performance Flexible Electronics for Electronic Skin Application William Ringal Taube Navaraj A Thesis submitted to School of Engineering University of Glasgow in fulfilment of the requirements for the degree of Doctor of Philosophy January 2019 Supervisors: Prof. Ravinder Dahiya Prof. Duncan Gregory Abstract Electronics in the future will be printed on diverse substrates, benefiting several emerging applications such as electronic skin (e-skin) for robotics/prosthetics, flexible displays, flexible/conformable biosensors, large area electronics, and implantable devices. For such applications, electronics based on inorganic micro/nanostructures (IMNSs) from high mobility materials such as single crystal silicon and compound semiconductors in the form of ultrathin chips, membranes, nanoribbons (NRs), nanowires (NWs) etc., offer promising high-performance solutions compared to conventional organic materials. This thesis presents an investigation of the various forms of IMNSs for high-performance electronics. Active components (from Silicon) and sensor components (from indium tin oxide (ITO), vanadium pentaoxide (V2O5), and zinc oxide (ZnO)) were realised based on the IMNS for application in artificial tactile skin for prosthetics/robotics. Inspired by human tactile sensing, a capacitive-piezoelectric tandem architecture was realised with indium tin oxide (ITO) on a flexible polymer sheet for achieving static (upto 0.25 kPa-1 sensitivity) and dynamic (2.28 kPa-1 sensitivity) tactile sensing. -
Ultra Low Power Robust 12T Sram Architecture Based on Parallel Cross- Coupling Feedback
OF JOURNAL CRITICAL REVIEWS ISSN- 2394-5125 VOL 7, ISSUE 19, 2020 ULTRA LOW POWER ROBUST 12T SRAM ARCHITECTURE BASED ON PARALLEL CROSS- COUPLING FEEDBACK Dr.H.Kareemullah2, Mr.C.Venkatnarayanan2 1Assistant Professor, Department of Electronics & Instrumentation Engineering, B.S.A.Crescent Institute of Science & Technology, Chennai, email: [email protected] 2Teaching Fellow, Department of ECE,University College of Engineering Arni, Thatchur, Arni – 632 326. email: [email protected] ABSTRACT: Ultra-low power, low on-chip processing circuits are highly desirable for lightweight and wearable applications. Memory is an integral part of most of these systems and is also diminished as the scale of the system reduces. Low power and processing architecture at high speed is therefore a major concern. The durability of random static access memory cells (SRAM) is another critical factor. This paper provides a new standard memory cell based (SCM) twelve-transistor (12 T) circuit. In order to achieve high region performance and low energy usage, three gating transistors for each column of SRAM cells have been used. The three-stage read-out system eliminates reading delays as well as energy consumption. As compared to the previously published SCM circuit in a 65-nm CMOS technology, the read and write energy consumption per operation is reduced. In comparison to the previously published SCM circuit, read time and cell lay-out are also reduced . In comparison, the traditional T-architecture guarantees high data consistency and writes functionality with the proposed 12 T SRAM module. KEYWORDS: SCM, twelve-transistor and SRAM cells I. INTRODUCTION: The need for low power / energy consumption of the integrated ICs, is increasingly rigid with the prosperity of portable and wearable electronic devices and the ubiquitous implementation of wireless sensor networks. -
Algorithms for Passive Dynamical Modeling and Passive Circuit
Algorithms for Passive Dynamical Modeling and Passive Circuit Realizations by Zohaib Mahmood B.Sc., University of Engineering and Technology, Lahore, Pakistan (2007) S.M., Massachusetts Institute of Technology (2010) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2015 ⃝c Massachusetts Institute of Technology 2015. All rights reserved. Author................................................................ Department of Electrical Engineering and Computer Science January 08, 2015 Certified by. Luca Daniel Emanuel E. Landsman Associate Professor of Electrical Engineering Thesis Supervisor Accepted by . Leslie A. Kolodziejski Chairman, Department Committee on Graduate Theses 2 Algorithms for Passive Dynamical Modeling and Passive Circuit Realizations by Zohaib Mahmood Submitted to the Department of Electrical Engineering and Computer Science on January 08, 2015, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering and Computer Science Abstract The design of modern electronic systems is based on extensive numerical simulations, aimed at predicting the overall system performance and compliance since early de- sign stages. Such simulations rely on accurate dynamical models. Linear passive components are described by their frequency response in the form of admittance, impedance or scattering parameters which are obtained by physical measurements or electromagnetic field simulations. Numerical dynamical models for these components are constructed by a fitting to frequency response samples. In order to guarantee sta- ble system level simulations, the dynamical models of the passive components need to preserve the passivity property (or inability to generate power), in addition to being causal and stable. -
Modeling of Memristive Systems and Its Applications
Modeling of memristive systems and its applications By Jose´ Balaam Alarcon´ Angulo Thesis submitted as a partial requirement for the degree of Master in Science with specialty in Electronics at the Instituto Nacional de Astrof´ısica, Optica´ y Electronica´ San Andres´ Cholula, Puebla Adviser: Dr. Librado Arturo Sarmiento Reyes, INAOE c INAOE 2017 The author hereby grants to INAOE permission to reproduce and to distribute copies of this thesis document in whole or in part Modeling of memristive systems and its applications Master's Thesis By: Jos´eBalaam Alarc´onAngulo Adviser: Dr. Librado Arturo Sarmiento Reyes Instituto Nacional de Astrof´ısica Optica´ y Electr´onica Electronics Department San Andres´ Cholula, Puebla. January 16, 2018 i Agradezco a mis padres Guadalupe Alarc´ony Ma. Teresa y a mi hermana Dayanira Alarc´onpor su incondicional apoyo a lo largo de toda mi vida. Al doctor Arturo Sarmiento por su orientaci´ondurante el desarrollo de esta tesis.Y a todos mis amigos que siempre est´anah´ıe hicieron invaluables aportes para el desarrollo de este trabajo. Modeling of memristive systems and its applications iii To my future readers. I hope you will enjoy reading this work as much as I did when writing it and that it will serves as a guide for future work. Modeling of memristive systems and its applications Resumen Desde el advenimiento del memristor como elemento b´asicode circuito real, ha habido un significativo impulso en la investigaci´onorientada al desarrollo de aplicaciones del memristor en dise~node circuitos y procesamiento de se~nales.Amplificadores con retroalimentac´onnegativa basados en nullores se encuentran entre las aplicaciones m´as factibles debido a que la propiedad de memoria del memristor puede ser incorporada a la transferencia de amplificaci´onal colocar el memristor directamente en el lazo de retroalimentaci´on. -
Stability, Causality, and Passivity in Electrical Interconnect Models Piero Triverio, Student Member, IEEE, Stefano Grivet-Talocia, Senior Member, IEEE, Michel S
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON ADVANCED PACKAGING 1 Stability, Causality, and Passivity in Electrical Interconnect Models Piero Triverio, Student Member, IEEE, Stefano Grivet-Talocia, Senior Member, IEEE, Michel S. Nakhla, Fellow, IEEE, Flavio G. Canavero, Fellow, IEEE, and Ramachandra Achar, Senior Member, IEEE Abstract—Modern packaging design requires extensive signal matrix of some electrical interconnect or the impedance of a integrity simulations in order to assess the electrical performance power/ground distribution network. This first step leads to a set of the system. The feasibility of such simulations is granted only of tabulated frequency responses of the structure under inves- when accurate and efficient models are available for all system parts and components having a significant influence on the signals. tigation. Then, a suitable identification procedure is applied to Unfortunately, model derivation is still a challenging task, despite extract a model from the above tabulated data. This second step the extensive research that has been devoted to this topic. In fact, aims at providing a simplified mathematical representation of it is a common experience that modeling or simulation tasks some- the input–output system behavior, which can be employed in a times fail, often without a clear understanding of the main reason. suitable simulation computer aided-design (CAD) environment This paper presents the fundamental properties of causality, stability, and passivity that electrical interconnect models must for system analysis, design, and prototyping. For instance, satisfy in order to be physically consistent. -
A Survey of Memristive Threshold Logic Circuits Akshay Kumar Maan, Deepthi Anirudhan Jayadevi, and Alex Pappachen James, Senior Member, IEEE
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1 A Survey of Memristive Threshold Logic Circuits Akshay Kumar Maan, Deepthi Anirudhan Jayadevi, and Alex Pappachen James, Senior Member, IEEE Abstract—In this paper, we review the different memristive Threshold logic (TL) itself was first introduced by Warren threshold logic (MTL) circuits that are inspired from the synaptic McCulloch and Walter Pitts in 1943 [17] in the early model action of flow of neurotransmitters in the biological brain. of an artificial neuron based on the basic property of firing Brain-like generalisation ability and area minimisation of these threshold logic circuits aim towards crossing the Moore’s law of the biological neuron. The logic computed the sign of the boundaries at device, circuits and systems levels. Fast switch- weighted sum of its inputs. Modelling a neuron as a threshold ing memory, signal processing, control systems, programmable logic gate (TLG) that fires when input reaches a threshold has logic, image processing, reconfigurable computing, and pattern been the basis of the research on neural networks (NNs) and recognition are identified as some of the potential applications of their hardware implementation in standard CMOS logic [18]. MTL systems. The physical realization of nanoscale devices with However, to continue geometrical scaling of semiconductor memristive behaviour from materials like TiO2, ferroelectrics, silicon, and polymers has accelerated research effort in these components as per Moore’s Law (and beyond), semiconductor application areas inspiring the scientific community to pursue industry needs to investigate a future beyond CMOS, and design of high speed, low cost, low power and high density designs beyond the fetch-decode-execute paradigm of von neuromorphic architectures. -
Feedback Systems with Memristors
Feedback Systems with Memristors Milan Stork1, Josef Hrusak2, Daniel Mayer3 1,2Department of Applied Electronics and Telecommunications, 3Department of Theory of Electrical Engineering University of West Bohemia, 30614 Plzen, Czech Republic [email protected], [email protected], [email protected] Abstract In 1971 the electrical engineer Leon Chua pointed out [1], that, a fourth passive element should in fact be added to the list The contribution is concerned on the properties of the new of basic circuits elements. He named this hypothetical element, ideal circuit element, a memristor. By definition, a linking flux and charge, the memristor. It is just the inability to memristor relates the charge q and the magnetic flux in a duplicate the properties of the memistor with a combination of circuit, and complements a resistor R, a capacitor C, and an the other three passive circuits elements, what makes the inductor L as an ingredient of ideal electrical circuits. The existence question of the memristor fundamental. properties of these three elements and their circuits are a The point is that a static nonlinearity interpreted as a part of the standard curricula. The existence of the memristor always appears instantaneously as a nonlinear memristor as the fourth ideal circuit element was predicted resistor. However, in fact it represents a new passive element, in 1971 based on symmetry arguments, but was clearly which may relate some state variable to flux without storing a experimentally demonstrated in 2008. The definition of the magnetic field. memristor is based solely on fundamental circuit variables, The HP memristor is a passive two-terminal electronic device similar to the resistor, capacitor, and inductor. -
Power Electronics – Quo Vadis
Power Electronics – Quo Vadis Frede Blaabjerg Professor, IEEE Fellow [email protected] Aalborg University Department of Energy Technology Aalborg, Denmark Outline ► Power Electronics and Components State-of-the-art; Technology overview, global impact ► Renewable Energy Systems PV; Wind power; Cost of Energy; Grid Codes ► Reliable Power Electronics Reliability, Design for reliability, Physics of Failure ► Outlook ► Aalborg University, Denmark Denmark Aalborg H. C. Andersen USNEWS 2019 Engineering Copenhagen No. 4 globally No. 1 in Europe Odense No. 1 in normalized citation impact globally Source: https://www.usnews.com/education/best- global-universities/engineering Established in 1974 PBL-Aalborg Model 22,000 students (Problem-based 2,300 faculty learning) CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 33 ► Where are We Now? CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 44 ► Energy Technology Department at Aalborg University 40+ Faculty, 120+ PhDs, 30+ RAs & Postdocs, 20+ Technical staff, 80+ visiting scholars 60% of manpower on power electronics and its applications CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 55 Power Electronics and Components ► Transition of Energy System from Central to De-central Power Generation (Source: Danish Energy Agency) (Source: Danish Energy Agency) from large synchronous generators to more power electronic converters Source: http://media.treehugger.com Towards 100% Power Electronics Interfaced Source: http://electrical-engineering-portal.com Integration to electric grid Power -
DC Operating Points of Transistor Circuits
NOLTA, IEICE Invited Paper DC operating points of transistor circuits Ljiljana Trajkovi´c 1 a) 1 Simon Fraser University Vancouver, British Columbia, Canada a) [email protected] Received January 10, 2012; Revised April 12, 2012; Published July 1, 2012 Abstract: Finding a circuit’s dc operating points is an essential step in its design and involves solving systems of nonlinear algebraic equations. Of particular research and practical interests are dc analysis and simulation of electronic circuits consisting of bipolar junction and field- effect transistors (BJTs and FETs), which are building blocks of modern electronic circuits. In this paper, we survey main theoretical results related to dc operating points of transistor circuits and discuss numerical methods for their calculation. Key Words: nonlinear circuits, transistor circuits, dc operating points, circuit simulation, continuation methods, homotopy methods 1. Introduction A comprehensive theory of dc operating points of transistor circuits has been established over the past three decades [2, 7, 26, 32, 53, 64, 65]. These results provided understanding of the system’s quali- tative behavior where nonlinearities played essential role in ensuring the circuit’s functionality. While circuits such as amplifiers and logic gates have been designed to possess a unique dc operating point, bistable circuits such as flip-flops, static shift registers, static random access memory (RAM) cells, latch circuits, oscillators, and Schmitt triggers need to have multiple isolated dc operating points. Researchers and designers were interested in finding if a given circuit possesses unique or multiple operating points and in establishing the number or upper bound of operating points a circuits may possess. -
Low-Cost Implementation of Passivity-Based Control and Estimation of Load Torque for a Luo Converter with Dynamic Load
electronics Article Low-Cost Implementation of Passivity-Based Control and Estimation of Load Torque for a Luo Converter with Dynamic Load Ganesh Kumar Srinivasan 1,* , Hosimin Thilagar Srinivasan 1 and Marco Rivera 2 1 Department of Electrical and Electronics Engineering, Anna University, Chennai 600025, Tamil Nadu, India; [email protected] 2 Department of Electrical Engineering, Centro Tecnologico de Conversión de Energía, Faculty of Engineering, Universidad de Talca, Curico 3465548, Chile; [email protected] * Correspondence: [email protected]; Tel.: +91-9791-071-498 Received: 9 October 2020; Accepted: 1 November 2020; Published: 13 November 2020 Abstract: In this paper, passivity-based control (PBC) of a Luo converter-fed DC motor is implemented and presented. In PBC, both exact tracking error dynamics passive output feedback control (ETEDPOF) and energy shaping and damping injection methods do not require a speed sensor. As ETEDPOF does not depend upon state computation, it is preferred in the proposed work for the speed control of a DC motor under no-load and loaded conditions. Under loaded conditions, the online algebraic approach in sensorless mode (SAA) is used for estimating different load torques applied on the DC motor such as: constant, frictional, fan-type, propeller-type and unknown load torques. Performance of SAA is tested with the reduced order observer in sensorless mode (SROO) approach and analyzed, and the results are presented to validate the low-cost implementation of PBC for a DC drive without a speed and torque sensor. Keywords: DC motor; Luo converter; passivity-based control; load torque estimation 1. Introduction Electrical motors are the workforce in industrial applications. -
Shitusqtetlooxnv.Pdf
Deliyannis, Theodore L. et al "Frontmatter" Continuous-Time Active Filter Design Boca Raton: CRC Press LLC,1999 Theodore L. Deliyannis University of Patras, Greece Yichuang Sun University of Hertfordshire, U.K. J. Kel Fidler University of York, U.K. Continuous-Time Active Filter Design ©1999 CRC Press LLC Preface “In this digital age, who needs continuous-time filters?” Such an obvious question, and one which deserves an immediate response. True, we do live in a digital age—digital com- puters, digital communications, digital broadcasting. But, much though digital technology may bring us advantages over analog systems, at the end of the day a digital system must interface with the real world—the analog world. For example, to gain the advantages that digital signal processing can offer, that processing must take place on bandlimited signals, if unwanted aliasing effects are not to be introduced. After the processing, the signals are returned to the real analog world after passing through a reconstruction filter. Both band- limiting and reconstruction filters are analog filters, operating in continuous time. This is but one example—but any system that interfaces with the real world will find use for continu- ous-time filters. The term continuous-time perhaps needs some explanation. There was the time when ana- log filters were just that—they processed analog signals in real time, in contrast to digital filters which performed filtering operations on digital representations of samples of sig- nals, often not in real time. Then in the 1970s, along came sampled data filters. Sampled data filters did not work with digital representations of the sampled signal, but operated on the samples themselves.