electronics Article Low-Cost Implementation of Passivity-Based Control and Estimation of Load Torque for a Luo Converter with Dynamic Load Ganesh Kumar Srinivasan 1,* , Hosimin Thilagar Srinivasan 1 and Marco Rivera 2 1 Department of Electrical and Electronics Engineering, Anna University, Chennai 600025, Tamil Nadu, India;
[email protected] 2 Department of Electrical Engineering, Centro Tecnologico de Conversión de Energía, Faculty of Engineering, Universidad de Talca, Curico 3465548, Chile;
[email protected] * Correspondence:
[email protected]; Tel.: +91-9791-071-498 Received: 9 October 2020; Accepted: 1 November 2020; Published: 13 November 2020 Abstract: In this paper, passivity-based control (PBC) of a Luo converter-fed DC motor is implemented and presented. In PBC, both exact tracking error dynamics passive output feedback control (ETEDPOF) and energy shaping and damping injection methods do not require a speed sensor. As ETEDPOF does not depend upon state computation, it is preferred in the proposed work for the speed control of a DC motor under no-load and loaded conditions. Under loaded conditions, the online algebraic approach in sensorless mode (SAA) is used for estimating different load torques applied on the DC motor such as: constant, frictional, fan-type, propeller-type and unknown load torques. Performance of SAA is tested with the reduced order observer in sensorless mode (SROO) approach and analyzed, and the results are presented to validate the low-cost implementation of PBC for a DC drive without a speed and torque sensor. Keywords: DC motor; Luo converter; passivity-based control; load torque estimation 1. Introduction Electrical motors are the workforce in industrial applications.