INTRODUCTION to COMSOL Multiphysics Introduction to COMSOL Multiphysics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Framework for the Static and Dynamic Analysis of Interaction Graphs
A Framework for the Static and Dynamic Analysis of Interaction Graphs DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sitaram Asur, B.E., M.Sc. * * * * * The Ohio State University 2009 Dissertation Committee: Approved by Prof. Srinivasan Parthasarathy, Adviser Prof. Gagan Agrawal Adviser Prof. P. Sadayappan Graduate Program in Computer Science and Engineering c Copyright by Sitaram Asur 2009 ABSTRACT Data originating from many different real-world domains can be represented mean- ingfully as interaction networks. Examples abound, ranging from gene expression networks to social networks, and from the World Wide Web to protein-protein inter- action networks. The study of these complex networks can result in the discovery of meaningful patterns and can potentially afford insight into the structure, properties and behavior of these networks. Hence, there is a need to design suitable algorithms to extract or infer meaningful information from these networks. However, the challenges involved are daunting. First, most of these real-world networks have specific topological constraints that make the task of extracting useful patterns using traditional data mining techniques difficult. Additionally, these networks can be noisy (containing unreliable interac- tions), which makes the process of knowledge discovery difficult. Second, these net- works are usually dynamic in nature. Identifying the portions of the network that are changing, characterizing and modeling the evolution, and inferring or predict- ing future trends are critical challenges that need to be addressed in the context of understanding the evolutionary behavior of such networks. To address these challenges, we propose a framework of algorithms designed to detect, analyze and reason about the structure, behavior and evolution of real-world interaction networks. -
Reference Manual Ii
GiD The universal, adaptative and user friendly pre and postprocessing system for computer analysis in science and engineering Reference Manual ii Table of Contents Chapters Pag. 1 INTRODUCTION 1 1.1 What's GiD 1 1.2 GiD Manuals 1 2 GENERAL ASPECTS 3 2.1 GiD Basics 3 2.2 Invoking GiD 4 2.2.1 First start 4 2.2.2 Command line flags 5 2.2.3 Command line extra file 6 2.2.4 Settings 6 2.3 User Interface 7 2.3.1 Top menu 9 2.3.2 Toolbars 9 2.3.3 Command line 12 2.3.4 Status and Information 13 2.3.5 Right buttons 13 2.3.6 Mouse operations 13 2.3.7 Classic GiD theme 14 2.4 User Basics 16 2.4.1 Point definition 16 2.4.1.1 Picking in the graphical window 17 2.4.1.2 Entering points by coordinates 17 2.4.1.2.1 Local-global coordinates 17 2.4.1.2.2 Cylindrical coordinates 18 2.4.1.2.3 Spherical coordinates 18 2.4.1.3 Base 19 2.4.1.4 Selecting an existing point 19 2.4.1.5 Point in line 19 2.4.1.6 Point in surface 19 2.4.1.7 Tangent in line 19 2.4.1.8 Normal in surface 19 2.4.1.9 Arc center 19 2.4.1.10 Grid 20 2.4.2 Entity selection 20 2.4.3 Escape 21 2.5 Files Menu 22 2.5.1 New 22 2.5.2 Open 22 2.5.3 Open multiple.. -
Calculix USER's MANUAL
CalculiX USER’S MANUAL - CalculiX GraphiX, Version 2.7 - Klaus Wittig February 18, 2014 Figure 1: A complex model made from scratch using second order brick elements 1 Contents 1 Introduction 7 2 Concept 7 3 File Formats 8 4 Getting Started 9 5 Program Parameters 13 6 Input Devices 14 6.1 Mouse ................................. 14 6.2 Keyboard ............................... 15 7 Menu 16 7.1 Datasets................................ 16 7.1.1 Entity ............................. 17 7.2 Viewing ................................ 17 7.2.1 ShowElementsWithLight . 17 7.2.2 ShowBadElements . 17 7.2.3 Fill............................... 17 7.2.4 Lines.............................. 17 7.2.5 Dots.............................. 18 7.2.6 ToggleCullingBack/Front . 18 7.2.7 ToggleModelEdges . 18 7.2.8 ToggleElementEdges . 18 7.2.9 ToggleSurfaces/Volumes . 18 7.2.10 Toggle Move-Z/Zoom . 18 7.2.11 Toggle Background Color . 19 7.2.12 ToggleVector-Plot . 19 7.2.13 ToggleAdd-Displacement . 19 7.3 Animate................................ 19 7.3.1 Start.............................. 19 7.3.2 Tune-Value .......................... 19 7.3.3 StepsperPeriod ....................... 20 7.3.4 TimeperPeriod ....................... 20 7.3.5 ToggleRealDisplacements . 20 7.3.6 ToggleDatasetSequence. 20 7.4 Frame ................................. 20 7.5 Zoom ................................. 20 7.6 Center................................. 20 7.7 Enquire ................................ 21 7.8 Cut .................................. 21 7.9 Graph ................................. 21 7.10Orientation .............................. 21 2 7.10.1 +xView............................ 21 7.10.2 -xView ............................ 21 7.10.3 +yView............................ 21 7.10.4 -yView ............................ 21 7.10.5 +zView............................ 21 7.10.6 -zView ............................ 22 7.11Hardcopy ............................... 22 7.11.1 Tga-Hardcopy ........................ 22 7.11.2 Ps-Hardcopy ......................... 22 7.11.3 Gif-Hardcopy . -
Experiment 12
Experiment 12 Velocity and Propagation of Waves 12.1 Objective To use the phenomenon of resonance to determine the velocity of the propagation of waves in taut strings and wires. 12.2 Discussion Any medium under tension or stress has the following property: disturbances, motions of the matter of which the medium consists, are propagated through the medium. When the disturbances are periodic, they are called waves, and when the disturbances are simple harmonic, the waves are sinusoidal and are characterized by a common wavelength and frequency. The velocity of propagation of a disturbance, whether or not it is periodic, depends generally upon the tension or stress in the medium and on the density of the medium. The greater the stress: the greater the velocity; and the greater the density: the smaller the velocity. In the case of a taut string or wire, the velocity v depends upon the tension T in the string or wire and the mass per unit length µ of the string or wire. Theory predicts that the relation should be T v2 = (12.1) µ Most disturbances travel so rapidly that a direct determination of their velocity is not possible. However, when the disturbance is simple harmonic, the sinusoidal character of the waves provides a simple method by which the velocity of the waves can be indirectly determined. This determination involves the frequency f and wavelength λ of the wave. Here f is the frequency of the simple harmonic motion of the medium and λ is from any point of the wave to the next point of the same phase. -
Tuning a Guitar to the Harmonic Series for Primer Music 150X Winter, 2012
Tuning a guitar to the harmonic series For Primer Music 150x Winter, 2012 UCSC, Polansky Tuning is in the D harmonic series. There are several options. This one is a suggested simple method that should be simple to do and go very quickly. VI Tune the VI (E) low string down to D (matching, say, a piano) D = +0¢ from 12TET fundamental V Tune the V (A) string normally, but preferably tune it to the 3rd harmonic on the low D string (node on the 7th fret) A = +2¢ from 12TET 3rd harmonic IV Tune the IV (D) string a ¼-tone high (1/2 a semitone). This will enable you to finger the 11th harmonic on the 5th fret of the IV string (once you’ve tuned). In other words, you’re simply raising the string a ¼-tone, but using a fretted note on that string to get the Ab (11th harmonic). There are two ways to do this: 1) find the 11th harmonic on the low D string (very close to the bridge: good luck!) 2) tune the IV string as a D halfway between the D and the Eb played on the A string. This is an approximation, but a pretty good and fast way to do it. Ab = -49¢ from 12TET 11th harmonic III Tune the III (G) string to a slightly flat F# by tuning it to the 5th harmonic of the VI string, which is now a D. The node for the 5th harmonic is available at four places on the string, but the easiest one to get is probably at the 9th fret. -
Development of a Coupling Approach for Multi-Physics Analyses of Fusion Reactors
Development of a coupling approach for multi-physics analyses of fusion reactors Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) bei der Fakultat¨ fur¨ Maschinenbau des Karlsruher Instituts fur¨ Technologie (KIT) genehmigte DISSERTATION von Yuefeng Qiu Datum der mundlichen¨ Prufung:¨ 12. 05. 2016 Referent: Prof. Dr. Stieglitz Korreferent: Prof. Dr. Moslang¨ This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ Abstract Fusion reactors are complex systems which are built of many complex components and sub-systems with irregular geometries. Their design involves many interdependent multi- physics problems which require coupled neutronic, thermal hydraulic (TH) and structural mechanical (SM) analyses. In this work, an integrated system has been developed to achieve coupled multi-physics analyses of complex fusion reactor systems. An advanced Monte Carlo (MC) modeling approach has been first developed for converting complex models to MC models with hybrid constructive solid and unstructured mesh geometries. A Tessellation-Tetrahedralization approach has been proposed for generating accurate and efficient unstructured meshes for describing MC models. For coupled multi-physics analyses, a high-fidelity coupling approach has been developed for the physical conservative data mapping from MC meshes to TH and SM meshes. Interfaces have been implemented for the MC codes MCNP5/6, TRIPOLI-4 and Geant4, the CFD codes CFX and Fluent, and the FE analysis platform ANSYS Workbench. Furthermore, these approaches have been implemented and integrated into the SALOME simulation platform. Therefore, a coupling system has been developed, which covers the entire analysis cycle of CAD design, neutronic, TH and SM analyses. -
Homelab 2 [Solutions]
Homelab 2 [Solutions] In this homelab we will build a monochord and measure the fundamental and harmonic frequencies of a steel string. The materials you will need will be handed out in class. They are: a piece of wood with two holes in it, two bent nails, and a steel guitar string. The string we will give you has a diameter of 0.010 inch. You will also find it helpful to have some kind of adhesive tape handy when you put the string on the monochord. As soon as you can, you should put a piece of tape on the end of the string. The end is sharp and the tape will keep you from hurting your fingers. Step 1 Push the nails into the holes as shown above. They should go almost, but not quite, all the way through the board. If you push them too far in they will stick out the bottom, the board will not rest flat, and you might scratch yourself on them. You won't need a hammer to put the nails in because the holes are already big enough. You might need to use a book or some other solid object to push them in, or it might help to twist them while you push. The nails we are using are called 'coated sinkers.' They have a sticky coating that will keep them from turning in the holes when you don't want them to. It cannot be iterated enough to be careful with the nails. Refer to the diagram above if you are unsure about how the final product of this step looks like. -
Guitar Harmonics - Wikipedia, the Free Encyclopedia Guitar Harmonics from Wikipedia, the Free Encyclopedia
3/14/2016 Guitar harmonics - Wikipedia, the free encyclopedia Guitar harmonics From Wikipedia, the free encyclopedia A guitar harmonic is a musical note played by preventing or amplifying vibration of certain overtones of a guitar string. Music using harmonics can contain very high pitch notes difficult or impossible to reach by fretting. Guitar harmonics also produce a different sound quality than fretted notes, and are one of many techniques used to create musical variety. Contents Basic and harmonic oscillations of a 1 Technique string 2 Overtones 3 Nodes 4 Intervals 5 Advanced techniques 5.1 Pinch harmonics 5.2 Tapped harmonics 5.3 String harmonics driven by a magnetic field 6 See also 7 References Technique Harmonics are primarily generated manually, using a variety of techniques such as the pinch harmonic. Another method utilizes sound wave feedback from a guitar amplifier at high volume, which allows for indefinite vibration of certain string harmonics. Magnetic string drivers, such as the EBow, also use string harmonics to create sounds that are generally not playable via traditional picking or fretting techniques. Harmonics are most often played by lightly placing a finger on a string at a nodal point of one of the overtones at the moment when the string is driven. The finger immediately damps all overtones that do not have a node near the location touched. The lowest-pitch overtone dominates the resulting sound. https://en.wikipedia.org/wiki/Guitar_harmonics 1/6 3/14/2016 Guitar harmonics - Wikipedia, the free encyclopedia Overtones When a guitar string is plucked normally, the ear tends to hear the fundamental frequency most prominently, but the overall sound is also 0:00 MENU colored by the presence of various overtones (integer multiples of the Tuning a guitar using overtones fundamental frequency). -
Livelink for MATLAB User's Guide
LiveLink™ for MATLAB® User’s Guide LiveLink™ for MATLAB® User’s Guide © 2009–2020 COMSOL Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,457,932;; 9,098,106; 9,146,652; 9,323,503; 9,372,673; 9,454,625, 10,019,544, 10,650,177; and 10,776,541. Patents pending. This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement. COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those or the above non-COMSOL trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks. Version: COMSOL 5.6 Contact Information Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact Technical Support, or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information. If you need to contact Support, an online request form is located at the COMSOL Access page at www.comsol.com/support/case. Other useful links include: • Support Center: www.comsol.com/support • Product Download: www.comsol.com/product-download • Product Updates: www.comsol.com/support/updates • COMSOL Blog: www.comsol.com/blogs • Discussion Forum: www.comsol.com/community • Events: www.comsol.com/events • COMSOL Video Gallery: www.comsol.com/video • Support Knowledge Base: www.comsol.com/support/knowledgebase Part number: CM020008 Contents Chapter 1: Introduction About This Product 12 Help and Documentation 14 Getting Help . -
The Physics of a Longitudinally Vibrating “Singing” Metal Rod
UIUC Physics 193/406 Physics of Music/Musical Instruments The Physics of a Longitudinally Vibrating Metal Rod The Physics of a Longitudinally Vibrating “Singing” Metal Rod: A metal rod (e.g. aluminum rod) a few feet in length can be made to vibrate along its length – make it “sing” at a characteristic, resonance frequency by holding it precisely at its mid-point with thumb and index finger of one hand, and then pulling the rod along its length, toward one of its ends with the thumb and index finger of the other hand, which have been dusted with crushed violin rosin, so as to obtain a good grip on the rod as it is pulled. L L L L/2 L/2 Pull on rod here along its length Hold rod here with thumb with violin rosin powdered thumb and index finger of one hand and index finger of other hand, stretching the rod The pulling motion of the thumb and index finger actually stretches the rod slightly, giving it potential energy – analogous to the potential energy associated with stretching a spring along its length, or a rubber band. The metal rod is actually an elastic solid – elongating slightly when pulled! Pulling on the rod in this manner excites the rod, causing both of its ends to simultaneously vibrate longitudinally, back and forth along its length at a characteristic resonance frequency known as its fundamental frequency, f1. For an excited aluminum rod of length, L ~ 2 meters, it is thus possible that at one instant in time both ends of the rod will be extended a small distance, L ~ 1 mm beyond the normal, (i.e. -
The COMSOL Multiphysics Installation and Operations User's Guide
COMSOL Multiphysics ® Installation and Operations Guide VERSION 4.3 COMSOL Multiphysics Installation and Operations Guide 1998–2012 COMSOL Protected by U.S. Patents 7,519,518; 7,596,474; and 7,623,991. Patents pending. This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/sla) and may be used or copied only under the terms of the license agree- ment. COMSOL, COMSOL Desktop, COMSOL Multiphysics, and LiveLink are registered trademarks or trade- marks of COMSOL AB. Other product or brand names are trademarks or registered trademarks of their respective holders. Version: May 2012 COMSOL 4.3 Contact Information Visit www.comsol.com/contact for a searchable list of all COMSOL offices and local representatives. From this web page, search the contacts and find a local sales representative, go to other COMSOL websites, request information and pricing, submit technical support queries, subscribe to the monthly eNews email newsletter, and much more. If you need to contact Technical Support, an online request form is located at www.comsol.com/support/contact. Other useful links include: • Technical Support www.comsol.com/support • Software updates: www.comsol.com/support/updates • Online community: www.comsol.com/community • Events, conferences, and training: www.comsol.com/events • Tutorials: www.comsol.com/products/tutorials • Knowledge Base: www.comsol.com/support/knowledgebase Part No. CM010002 Contents Chapter 1: Introduction General Tips 8 General System Requirements for Windows, Linux, or Mac Computers . 8 Hardware Parameters that Affect Performance . 9 COMSOL Release Notes . 9 Introduction to COMSOL Multiphysics and Online Help . 9 Technical Support . -
COMSOL Multiphysics®
COMSOL Multiphysics ® M ODEL L IBRARY V ERSION 3.5a How to contact COMSOL: Germany United Kingdom COMSOL Multiphysics GmbH COMSOL Ltd. Benelux Berliner Str. 4 UH Innovation Centre COMSOL BV D-37073 Göttingen College Lane Röntgenlaan 19 Phone: +49-551-99721-0 Hatfield 2719 DX Zoetermeer Fax: +49-551-99721-29 Hertfordshire AL10 9AB The Netherlands [email protected] Phone:+44-(0)-1707 636020 Phone: +31 (0) 79 363 4230 www.comsol.de Fax: +44-(0)-1707 284746 Fax: +31 (0) 79 361 4212 [email protected] [email protected] Italy www.uk.comsol.com www.comsol.nl COMSOL S.r.l. Via Vittorio Emanuele II, 22 United States Denmark 25122 Brescia COMSOL, Inc. COMSOL A/S Phone: +39-030-3793800 1 New England Executive Park Diplomvej 376 Fax: +39-030-3793899 Suite 350 2800 Kgs. Lyngby [email protected] Burlington, MA 01803 Phone: +45 88 70 82 00 www.it.comsol.com Phone: +1-781-273-3322 Fax: +45 88 70 80 90 Fax: +1-781-273-6603 [email protected] Norway www.comsol.dk COMSOL AS COMSOL, Inc. Søndre gate 7 10850 Wilshire Boulevard Finland NO-7485 Trondheim Suite 800 COMSOL OY Phone: +47 73 84 24 00 Los Angeles, CA 90024 Arabianranta 6 Fax: +47 73 84 24 01 Phone: +1-310-441-4800 FIN-00560 Helsinki [email protected] Fax: +1-310-441-0868 Phone: +358 9 2510 400 www.comsol.no Fax: +358 9 2510 4010 COMSOL, Inc. [email protected] Sweden 744 Cowper Street www.comsol.fi COMSOL AB Palo Alto, CA 94301 Tegnérgatan 23 Phone: +1-650-324-9935 France SE-111 40 Stockholm Fax: +1-650-324-9936 COMSOL France Phone: +46 8 412 95 00 WTC, 5 pl.