Geophysical Journal International Geophys. J. Int. (2017) 210, 819–832 doi: 10.1093/gji/ggx191 Advance Access publication 2017 May 5 GJI Seismology Internal structure of the San Jacinto fault zone at Blackburn Saddle from seismic data of a linear array Pieter-Ewald Share,1 Yehuda Ben-Zion,1 Zachary E. Ross,2 Hongrui Qiu1 and Frank L. Vernon3 1Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA. E-mail:
[email protected] 2Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125,USA 3Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093,USA Accepted 2017 May 4. Received 2017 April 29; in original form 2017 February 3 SUMMARY Local and teleseismic earthquake waveforms recorded by a 180-m-long linear array (BB) with seven seismometers crossing the Clark fault of the San Jacinto fault zone northwest of Anza are used to image a deep bimaterial interface and core damage structure of the fault. Delay times of P waves across the array indicate an increase in slowness from the southwest most (BB01) to the northeast most (BB07) station. Automatic algorithms combined with visual inspection and additional analyses are used to identify local events generating fault zone head and trapped waves. The observed fault zone head waves imply that the Clark fault in the area is a sharp bimaterial interface, with lower seismic velocity on the southwest side. The moveout between the head and direct P arrivals for events within ∼40 km epicentral distance indicates an average velocity contrast across the fault over that section and the top 20 km of 3.2 per cent.