Production of Radionuclides in Nuclear Reactor

Total Page:16

File Type:pdf, Size:1020Kb

Production of Radionuclides in Nuclear Reactor PRODUCTION OF RADIONUCLIDES IN NUCLEAR REACTOR J.L. Vučina, Lj.Vuksanović, R.Dobrijević Laboratory for Radioisotopes Vinca Institute of Nuclear Sciences 11001 Belgrade. P.OBox 522, Yugoslavia Abstract: Given is a short review on the production of radionuclides which was performed in the VinČa Institute of Nuclear Sciences by using the nuclear reactor RA. Regarding the considerations of the possible re-starting of this reactor its use for the production of medical radionuclides should be taken into account. Listed are some of the important medical radionuclides routinely produced in nuclear reactors in the world and discussed the conditions for their obtaining in the reactor RA. Key words: Nuclear reactor, Radionuclides, Nuclear medicine INTRODUCTION After the discovery of nuclear fission by Hahn and Strassmann in 1938 and the first self-sustaining nuclear chain reaction demonstrated by Fermi and coworkers in 1942 the permeation of reactor-produced radionuclides in nearly all fields of science was fast. Already in 1946 the first such radionuclides became available for public distribution. The pioneering role in the production and the distribution of radionuclides for medical and biological reasearch played the Oak Ridge National Laboratory (ORNL). The peacetime shipments of radionuclides became usual. Soon large activities of radionuclides in the elemental and in the form of labeled compounds were on disposal. Among the first there were the long lived beta emitters 3H, "C, 35S, 32P and ,2SI. The availability of these and afterwards many other radionuclides, the development of labeling techniques and the introduction of scintillation counters and scanners made the tracer technique particularly in nuclear medicine and biology an essential tool in the routine practice. The development of the radionuclides production in the Vinca (former "Boris Kidrič") Institute of Nuclear Sciences begun in 1956 together with the programm of the construction of the heavy-water nuclear reactor RA. This program was realised in three years and the first chain reaction was demonstrated on November 29, 1959. The reactor RA was operating till the mid seventies. In the frame of the discussions about its eventual re-starting its capability for the production of radionuclides should also be considered. This paper brings a short review about the production of radionuclides for the use in nuclear medicine performed in the Institute. Listed are some the radionuclides which are now routinely produced in the world and are currently applied in nuclear medicine for diagnostics and therapy. Some predictions regarding the possible production of some of them in the nuclear reactor RA are also revealed. PRODUCTION OD RADIONUCLIDES IN THE NUCLEAR REACTOR RA After the begirming of the operation of reactor RA the production procedures of many radionuclides were developed. In 1959 the HOT Laboratory was founded which included also the Department for the production of radioisotopes in which most of these investigations were performed. At the end of sixties there were already about 70 radioactive products with 25 radionuclides in routine production (1). By using the targets in the form of carbonates produced were radionuclides like 24Na, 42K, ASCa and wSr. *°Co, "Zn and U0Ag were obtained by irradiation of metal targets while oxides were applied for the production of ^e 545 and "'Ce. The processes of the separation of the desired radionuclide from the irradiated material were relatively simple consisting of dissolution, filtration, etc. However, their specific activities were usually low due to the presence of carrier. For special applications, particularly in nuclear medicine, radionuclides of high specific activities are required. Such production is much more complicated. Several such procedures were developed in the Institute. Most of these very important radionuclides are still routinely produced and applied in the world. The basic data about some of these radionuclides, together with their possible applications are given in Table 1. Table 1: Some of the most important radionuclides for the application in medicine and biology produced in the nuclear reactor RA a) Nuclear reaction (n,y) Radio• Mode of decay. nuclide Target Uses Ref. Energy (MeV) 24Na p-(E*„=1.390) Na2C03 Hypertension research 1,2 (15 h) y(1.370; 2.750 Cancer treatment, cell P O P(E =1.710) metabolism, production of 3 (14.3 d) 2 5 mM radiopharmaceuticals To assess reed blood cells slCr Cr 0, EC 2 survival studies, Production 4 (27.8 d) Szilard- Chalmers y (0.320) of radiopharmaceuticals 59 58 Fe Fez03 PXE^^eo) Biochemistry research tracer 2 (44.6 d) (enriched target) Y (0.192; 1.099; 1.291) 75Se 74Se EC Protein studies 2 (120 d) (enriched target) Y (0.121; 0.135; 0.264) "Mo PtE^l.39); 99n Mo03 To produce Tc 5 (66.6 h) y (0.181; 0.739) Thyroid diagnostics and 131J TeC) (3-^=0.61); 2 therapy, production of 6 (8.06 d) HJeO, y (0.364) radioph armaceuticals ™Hg EC Production of renal HgO 7 (46.59 d) Y (0.279) radiopharmaceutical 198Au PXE^O.960); Au Therapy of cancer 8 (2.69 d) Y (0.411) b) Nuclear reaction (n,p) Cancer treatment, cell MgS04 3-^=1.710) metabolism, production of (14.3 d) 9 radiopharmaceuticals 3S Biology, studies of cell S KC1 p-(EmK=1.710) metabolism, production of 10 (87.1 d) labelled compounds ROUTINE REACTOR-DRIVEN PRODUCTION OF RADIONUCLIDES Regarding the reactor-driven production of medical radionuclides performed in the world some comments can be given. 546 As it can be seen from Table 1 the production which was performed in nuclear reactor RA included both the radionuclides for diagnostics and therapy in nuclear medicine. The listed radionuclides are still in use except ^Hg which was abandoned in favour of other radionuclides with more suitable physical characteristics. However it is still produced but found some other application e.g. as the calibration source. Already for years the most important diagnostic radionuclide is WmTc. Its favourable physical characteristics and diverse chemistry enabled the development of many radiopharmaceuticals targetring different organs and tissues in human body. Other reactor- produced diagnostic radionuclides in common use are 125I,mI and 13JXe. The main source of "Tc are "MO/99MTC generators. The parent is produced almost exclusively by uranium fission. The former method by using (n,y) nuclear reaction, applied also in Yugoslavia (5), is abandoned due to low specific activity of the produced "Mo. Some other radionuclides are on large scale also obtained by the separation from the products of uranium fission ("Sr, ,33Xe). The very important radionuclide 131I can be in high activities routinely obtained both from fission and by neutron activation of tellurium. In the therapy there is no such a predominant radionuclide as it is ""Tc in the diagnostic nuclear medicine. Here the choice of a radionuclide depends not only on its physical and pharmacokinetic properties and the in-vivo localization. It depends in great deal also on the nature, size and radiosensitivity of the tumor. The proximity of the tumor to radiation-sensitive normal tissue should also be considered. Some of radionuclides for the application in therapy are listed in Table 2. Table 2: Reactor-produced radionuclides of high specific activities for the application in therapy in nuclear medicine Radionuclide Mode of decay Nuclear reaction Uses (T„) Energy (MeV) 65 Cancer therapy; Labelling of antibodies 61Cu (2.4 d) Zn(n,p) ME^O.57) y (0.184 for cancer therapy P^E^.ĆS) "As (1.6 d) *Ge(n p) Cancer therapy iyi Y (0.319) 1IO p-tE^l.OS) 111 Ag (7.5 d) Pd(n,Y,P) Cancer therapy Y (0.342) 131 13& p-(*W"0.81) Diagnostics and thyroid disorders I (8.05 d) Te(n,y,P) Y (0.364) including cancer treatment 177 p-(EmflX=0.5) Cancer treatment and labelling of Lu (6.7 d) 176Yb(n,y,p) y(0.20S) antibodies for cancer therapy KB«M).46) Cancer therapy; '"Au (3.2 d) 198Pt(n,y,P) Y (0.158) Treatment of rheumatoid arthritis Decays to "Y which is used in cancer *Sr (28.6 a) Fission of p-(E =2.27) max therapy 188 l88 186 ls7 Decays to Re which is used in cancer W (69.4 d) W(n,y) W(n,Y) p-(E =2.1) max therapy So the field of the therapeutic reactor-produced radionuclides is potentially very large. In short, the main categories of radionuclides for the eventuall use in therapy are: 1. Bone agent to reduce pain (""Sr, 186Rh, l88Rh, 153Sm, U7Sn) 2. Estrogens labelled by "Br or 131i for treatment of hormone-dependant cancers 3. Colloids for synovectomy (,65Dy, ,66Ho, "Y, l03Pd) 4. Monoclonal antibodies and tissue-specific peptides for cancer treatment (I25I ml "Y MCu) ' ' 547 CONCLUSION Nuclear reactors offer good possibilities of the production of radionuclides for nuclear-medical applications. In principle the radionuclides of interest could be produced either directly by some of the nuclear reactions given in Tables 1 and 2 or by using generator systems. Some of them are also given ("Mor-'Tc, '"Sr/^Y, ,88W/188Re). The most important diagnostics radionuclide is "Tc which is obtained by using 99Mo/"mTc generators.. The parent "Mo is almost exclusively produced by its separation from the products of uranium fission. Some other radionuclides (I31I, '"Sr, etc) are also obtained from uranium fission. For such a production in the nuclear reactor RA and particularly for the further purification there are no conditions. The other important radionuclide which is used both in diagnostics and therapy - i3,I could be however routinely obtained also by neutron activation of tellurium. Also possible is the production of some other radionuclides like 51Cr, 1251, 127Xe, some parents for the generator systems, etc.
Recommended publications
  • Radioisotopes and Radiopharmaceuticals
    RADIOISOTOPES AND RADIOPHARMACEUTICALS Radioisotopes are the unstable form of an element that emits radiation to become a more stable form — they have certain special attributes. These make radioisotopes useful in areas such as medicine, where they are used to develop radiopharmaceuticals, as well as many other industrial applications. THE PRODUCTION OF TECHNETIUM-99m RADIOPHARMACEUTICALS: ONE POSSIBLE ROUTE IRRADIATED U-235 99 TARGETS MO PROCESSING FACILITY HOSPITAL RADIOPHARMACY (MIXING WITH BIOLOGICAL MOLECULES THAT BIND AT DIFFERENT LOCATIONS IN THE 99mTC IS IDEAL FOR DIAGNOSTICS BECAUSE OF BODY, SUPPORTING A WIDE ITS SHORT HALF-LIFE (6 HOURS) AND IDEAL GAMMA EMISSION RANGE OF MEDICAL NUCLEAR APPLICATIONS) REACTOR: 6 HOURS MAKES DISTRIBUTION DIFFICULT 99MO BULK LIQUID TARGET ITS PARENT NUCLIDE, MOLYBDENUM-99, IS PRODUCED; ITS HALF-LIFE (66 HOURS) MAKES 99 99m IRRADIATION IT SUITABLE FOR TRANSPORT MO/ TC GENERATORS 99MO/99mTC GENERATORS ARE PRODUCED AND DISTRIBUTED AROUND THE GLOBE 99MO/99TC GENERATOR MANUFACTURER Radioisotopes can occur naturally or be produced artificially, mainly in research reactors and accelerators. They are used in various fields, including nuclear medicine, where radiopharmaceuticals play a major role. Radiopharmaceuticals are substances that contain a radioisotope, and have properties that make them effective markers in medical diagnostic or therapeutic procedures. The chemical presence of radiopharmaceuticals can relay detailed information to medical professionals that can help in diagnoses and treatments. Eighty percent of all diagnostic medical scans worldwide use 99mTc, and its availability, at present, is dependent on the production of 99Mo in research reactors. Globally, the number of medical procedures involving the use of radioisotopes is growing, with an increasing emphasis on radionuclide therapy using radiopharmaceuticals for the treatment of cancer..
    [Show full text]
  • OPERATIONAL GUIDANCE on HOSPITAL RADIOPHARMACY: a SAFE and EFFECTIVE APPROACH the Following States Are Members of the International Atomic Energy Agency
    OPERATIONAL GUIDANCE ON HOSPITAL RADIOPHARMACY: A SAFE AND EFFECTIVE APPROACH The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PAKISTAN ALBANIA HAITI PALAU ALGERIA HOLY SEE PANAMA ANGOLA HONDURAS PARAGUAY ARGENTINA HUNGARY PERU ARMENIA ICELAND PHILIPPINES AUSTRALIA INDIA POLAND AUSTRIA INDONESIA PORTUGAL AZERBAIJAN IRAN, ISLAMIC REPUBLIC OF QATAR BANGLADESH IRAQ REPUBLIC OF MOLDOVA BELARUS IRELAND ROMANIA BELGIUM ISRAEL RUSSIAN FEDERATION BELIZE ITALY SAUDI ARABIA BENIN JAMAICA SENEGAL BOLIVIA JAPAN SERBIA BOSNIA AND HERZEGOVINA JORDAN SEYCHELLES BOTSWANA KAZAKHSTAN BRAZIL KENYA SIERRA LEONE BULGARIA KOREA, REPUBLIC OF SINGAPORE BURKINA FASO KUWAIT SLOVAKIA CAMEROON KYRGYZSTAN SLOVENIA CANADA LATVIA SOUTH AFRICA CENTRAL AFRICAN LEBANON SPAIN REPUBLIC LIBERIA SRI LANKA CHAD LIBYAN ARAB JAMAHIRIYA SUDAN CHILE LIECHTENSTEIN SWEDEN CHINA LITHUANIA SWITZERLAND COLOMBIA LUXEMBOURG SYRIAN ARAB REPUBLIC COSTA RICA MADAGASCAR TAJIKISTAN CÔTE D’IVOIRE MALAWI THAILAND CROATIA MALAYSIA THE FORMER YUGOSLAV CUBA MALI REPUBLIC OF MACEDONIA CYPRUS MALTA TUNISIA CZECH REPUBLIC MARSHALL ISLANDS TURKEY DEMOCRATIC REPUBLIC MAURITANIA UGANDA OF THE CONGO MAURITIUS UKRAINE DENMARK MEXICO UNITED ARAB EMIRATES DOMINICAN REPUBLIC MONACO UNITED KINGDOM OF ECUADOR MONGOLIA GREAT BRITAIN AND EGYPT MONTENEGRO NORTHERN IRELAND EL SALVADOR MOROCCO ERITREA MOZAMBIQUE UNITED REPUBLIC ESTONIA MYANMAR OF TANZANIA ETHIOPIA NAMIBIA UNITED STATES OF AMERICA FINLAND NEPAL URUGUAY FRANCE NETHERLANDS UZBEKISTAN GABON NEW ZEALAND VENEZUELA GEORGIA NICARAGUA VIETNAM GERMANY NIGER YEMEN GHANA NIGERIA ZAMBIA GREECE NORWAY ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna.
    [Show full text]
  • Chapter 12 Monographs of 99Mtc Pharmaceuticals 12
    Chapter 12 Monographs of 99mTc Pharmaceuticals 12 12.1 99mTc-Pertechnetate I. Zolle and P.O. Bremer Chemical name Chemical structure Sodium pertechnetate Sodium pertechnetate 99mTc injection (fission) (Ph. Eur.) Technetium Tc 99m pertechnetate injection (USP) 99m ± Pertechnetate anion ( TcO4) 99mTc(VII)-Na-pertechnetate Physical characteristics Commercial products Ec=140.5 keV (IT) 99Mo/99mTc generator: T1/2 =6.02 h GE Healthcare Bristol-Myers Squibb Mallinckrodt/Tyco Preparation Sodium pertechnetate 99mTc is eluted from an approved 99Mo/99mTc generator with ster- ile, isotonic saline. Generator systems differ; therefore, elution should be performed ac- cording to the manual provided by the manufacturer. Aseptic conditions have to be maintained throughout the operation, keeping the elution needle sterile. The total eluted activity and volume are recorded at the time of elution. The resulting 99mTc ac- tivity concentration depends on the elution volume. Sodium pertechnetate 99mTc is a clear, colorless solution for intravenous injection. The pH value is 4.0±8.0 (Ph. Eur.). Description of Eluate 99mTc eluate is described in the European Pharmacopeia in two specific monographs de- pending on the method of preparation of the parent radionuclide 99Mo, which is generally isolated from fission products (Monograph 124) (Council of Europe 2005a), or produced by neutron activation of metallic 98Mo-oxide (Monograph 283) (Council of Europe 2005b). Sodium pertechnetate 99mTc injection solution satisfies the general requirements of parenteral preparations stated in the European Pharmacopeia (Council of Europe 2004). The specific activity of 99mTc-pertechnetate is not stated in the Pharmacopeia; however, it is recommended that the eluate is obtained from a generator that is eluted regularly, 174 12.1 99mTc-Pertechnetate every 24 h.
    [Show full text]
  • An EANM Procedural Guideline
    European Journal of Nuclear Medicine and Molecular Imaging https://doi.org/10.1007/s00259-018-4052-x GUIDELINES Clinical indications, image acquisition and data interpretation for white blood cells and anti-granulocyte monoclonal antibody scintigraphy: an EANM procedural guideline A. Signore1 & F. Jamar2 & O. Israel3 & J. Buscombe4 & J. Martin-Comin5 & E. Lazzeri6 Received: 27 April 2018 /Accepted: 6 May 2018 # The Author(s) 2018 Abstract Introduction Radiolabelled autologous white blood cells (WBC) scintigraphy is being standardized all over the world to ensure high quality, specificity and reproducibility. Similarly, in many European countries radiolabelled anti-granulocyte antibodies (anti-G-mAb) are used instead of WBC with high diagnostic accuracy. The EANM Inflammation & Infection Committee is deeply involved in this process of standardization as a primary goal of the group. Aim The main aim of this guideline is to support and promote good clinical practice despite the complex environment of a national health care system with its ethical, economic and legal aspects that must also be taken into consideration. Method After the standardization of the WBC labelling procedure (already published), a group of experts from the EANM Infection & Inflammation Committee developed and validated these guidelines based on published evidences. Results Here we describe image acquisition protocols, image display procedures and image analyses as well as image interpre- tation criteria for the use of radiolabelled WBC and monoclonal antigranulocyte antibodies. Clinical application for WBC and anti-G-mAb scintigraphy is also described. Conclusions These guidelines should be applied by all nuclear medicine centers in favor of a highly reproducible standardized practice. Keywords Infection .
    [Show full text]
  • Learn More About X-Rays, CT Scans and Mris (Pdf)
    What is the difference between X-Rays, CT Scans, and MRIs? X-Rays are a form of electromagnetic radiation, like light. They are less energetic than gamma rays, and more energetic than ultraviolet light. Because they pass easily through soft tissue, like organs and muscles, but not so easily through hard tissue like bones and teeth, we are most familiar with them being used to look at skeletal structures. Sometimes a person ingests or has injected an X-ray opaque fluid that will fill a space of interest for X-ray imaging. This is called an angiogram. A nuclear scan uses an injected gamma ray emitting substance that accumulates in the organ of interest and a special camera records the gamma rays. A CT Scan is usually a series of X-rays taken from different directions that are then assembled into a three dimensional model of the subject in a computer. CT stands for computed tomography, and tomography means a picture of a slice. Where an X-ray may show edges of soft tissues all stacked on top of each other, the computer in a CT scan can figure out how those edges relate to each other in depth, and so the image has much more soft tissue usability. Another kind of CT scan uses positrons. I have to mention this because positrons are antimatter electrons (Yes, antimatter does exist and it is useful!) In Positon Emission Tomography (PET) a positron emitting radionuclide (radioactive material) is attached to a metabolically useful molecule. This is introduced to the tissue, and as emitted positrons decompose they emit gamma rays which can be traced by the machine and computer back to their points of origin, and an image is formed.
    [Show full text]
  • CEA-Scan Package Insert
    10C007-3 CEA-Scan® (Arcitumomab) 8/99 For the Preparation of Technetium Tc 99m Arcitumomab. Sterile, Non-Pyrogenic, Lyophilized Powder for Intravenous Use Only. DESCRIPTION CEA-Scan® is a radiodiagnostic agent consisting of a murine monoclonal antibody Fab′ fragment, Arcitumomab, formulated to be labeled with Technetium Tc 99m. The active component, Arcitumomab, is a Fab′ fragment generated from IMMU-4, a murine IgG1 monoclonal antibody produced in murine ascitic fluid supplied to Immunomedics, Inc., by Charles River Laboratories. IMMU-4 is purified from the ascitic fluid and is digested with pepsin to produce F(ab′)2 fragments and subsequently reduced to produce the 50,000-dalton Arcitumomab. Each vial contains the non-radioactive materials necessary to prepare one patient dose. CEA-Scan® is a sterile, lyophilized formulation, containing 1.25 mg of Arcitumomab and 0.29 mg stannous chloride per vial, with potassium sodium tartrate tetrahydrate, sodium acetate trihydrate, sodium chloride, acetic acid, glacial, hydrochloric acid, and sucrose. The imaging agent, Technetium Tc 99m CEA-Scan®, Technetium Tc 99m Arcitumomab, is formed by reconstitution of the contents of the CEA-Scan® vial with 30 mCi of Tc 99m sodium pertechnetate in 1 ml of Sodium Chloride for Injection, USP. The resulting solution is pH 5-7 and for intravenous use only. Following administration, the labeled antibody can be visualized by common nuclear medicine instrumentation. Physical Characteristics of Technetium Tc 99m Technetium Tc 99m decays by isomeric transition with a physical half-life of 6.02 hours.2 The principal photon that is useful for detection and imaging is listed in the following table.
    [Show full text]
  • FR H 0356 001 Finalspc.Pdf
    1. NAME OF THE MEDICINAL PRODUCT STAMICIS 1 mg kit for radiopharmaceutical preparation 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each vial contains 1 mg [Tetrakis (2-methoxyisobutyl isonitrile) copper (I)] tetrafluoroborate. The radionuclide is not part of the kit. Excipients with known effect: One ml of solution contains 4.5 mg of sodium For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Kit for radiopharmaceutical preparation. White powder. 4. CLINICAL PARTICULARS 4.1. Therapeutic indications This medicinal product is for diagnostic use only. This is indicated for adults. For paediatric population see section 4.2. After radiolabelling with sodium pertechnetate (99mTc) solution, the solution of technetium (99mTc) sestamibi obtained is indicated for: Myocardial perfusion scintigraphy for the detection and localisation of coronary artery disease (angina pectoris and myocardial infarction). Assessment of global ventricular function. First-pass technique for determination of ejection fraction and/or ECG-triggered, gated SPECT for evaluation of left ventricular ejection fraction, volumes and regional wall motion. Scintimammography for the detection of suspected breast cancer when mammography is equivocal, inadequate or indeterminate. Localisation of hyperfunctioning parathyroid tissue in patients with recurrent or persistent disease in both primary and secondary hyperparathyroidism, and in patients with primary hyperparathyroidism scheduled to undergo initial surgery of the parathyroid glands. 4.2 Posology and method of administration Posology Adults and elderly population Posology may vary depending on gamma camera characteristics and reconstruction modalities. The injection of activities greater than local DRLs (Diagnostic Reference Levels) should be justified. 05/2016 1 The recommended activity range for intravenous administration to an adult patient of average weight (70 kg) is for: Diagnosis of reduced coronary perfusion and myocardial infarction 400-900 MBq.
    [Show full text]
  • Releasing Nuclear Medicine Patients to the Public
    Educational Objectives • Introduce participants to the medical conditions that are Releasing Nuclear Medicine treated with radioiodine. • Review the regulatory considerations regarding Patients to the Public: inpatient and outpatient radioiodine procedures. Dose Calculations and Discharge • Review ways in which the regulatory requirements may be satisfied, including “public” radiation dose Instructions computations, content of post-discharge instructions and addressing the concerns of patients and their families. Robert E. Reiman, MD Radiation Safety Division • Introduce Web-based methods to facilitate Duke University Medical Center documentation of outpatient treatment. Durham, NC Medically Useful Iodine Isotopes Treatment of Toxic Goiter Isotope Half-life Primary Use Emissions I-123 13.3 hours γ (0.158 MeV) Diagnosis • Surgery (not done, except for very large thyroid, low iodine uptake, cancer or I-124 4.2 days β+ and γ (0.511 Diagnosis, pregnancy) MeV +) Therapy(?) I-125 59.4 days γ (0.035 MeV) Brachytherapy • Drugs (propylthiouracil) and beta blockers (short-term) I-131 8.0 days β- (0.606 MeV), Diagnosis, • Ablation with radioactive iodine γ (0.364 MeV) Therapy Radioiodine Treatment Thyroid Carcinoma • I-131 sodium iodide solution, orally • 8 – 15 millicuries for diffuse toxic goiter • Incidence: about 3 per 100,000 per year • 15 – 40 millicuries for toxic multinodular • Females > Males (2:1) goiter • About 80% papillary type; remainder • Must know the % uptake at 24 hours to follicular or medullary types. compute administered activity and • Medullary thyroid carcinoma does not clearance rates take up radioiodine. 1 Diagnosis of Thyroid Treatment of Thyroid Carcinoma Carcinoma • Surgical removal of thyroid gland and • Usually asymptomatic except for a dissection of local lymph nodes.
    [Show full text]
  • Nuclide Safety Data Sheet Iodine-131
    131 Nuclide Safety Data Sheet 131 Iodine-131 I www.nchps.org I I. PHYSICAL DATA Radiation: Gammas & X-rays: primary 364 keV (81% abundance); others – 723 keV Betas: primary 606 keV (89% abundance); others 248 – 807 keV 1 Gamma Constant: 0.22 mR/hr per mCi @ 1.0 meter [7.647E-5 mSv/hr per MBq @ 1.0 meter] Half-Life [T½] : Physical T½: 8.04 days Biological T½: 120-138 days (unbound iodine) Effective T½: 7.6 days (unbound iodine) Specific Activity: 1.24E5 Ci/g [4,600 TBq/g] max. II. RADIOLOGICAL DATA Radiotoxicity2: 4.76 E-7 Sv/Bq (1.76 rem/uCi) of 131I ingested [Thyroid] 2.92 E-7 Sv/Bq (1.08 rem/uCi) of 131I inhaled [Thyroid] Critical Organ: Thyroid Gland Intake Routes: Ingestion, inhalation, puncture, wound, skin contamination (absorption); Radiological Hazard: External & Internal Exposure; Contamination III. SHIELDING Half Value Layer [HVL] Tenth Value Layer [TVL] Lead [Pb]3 3 mm (0.12 inches) 11 mm (0.43 inches) - The accessible dose rate should be background but must be < 2 mR/hr IV. DOSIMETRY MONITORING - Always wear radiation dosimetry monitoring badges [body & ring] whenever handling 131I - Conduct a baseline thyroid scan prior to first use of radioactive iodine - Conduct thyroid bioassay measurement [at neck just above collar bone] no earlier than 6 hours but within 72 hours of handling 1 mCi or more of 131I or after any suspected intake V. DETECTION & MEASUREMENT Portable Survey Meters: Geiger-Mueller [e.g. PGM] to assess shielding effectiveness & contamination Wipe Test: Liquid Scintillation Counter or Gamma Counter VI.
    [Show full text]
  • Leukoscan, INN-Sulesomab
    authorised ANNEX I longer SUMMARY OF PRODUCT CHARACTERISTICS no product Medicinal 1 1. NAME OF THE MEDICINAL PRODUCT LeukoScan 0.31 mg, powder for solution for injection 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Kit for the preparation of 99mTc-labelled LeukoScan. Each 3 ml vial contains 0.31 mg sulesomab (IMMU-MN3 murine Fab′-SH antigranulocyte monoclonal antibody fragments) for the preparation of 99mTc labelled LeukoScan. The kit does not include the radioisotope. Excipients: Sucrose (37.8 mg) For a full list of excipients, see section 6.1. authorised 3. PHARMACEUTICAL FORM Powder for solution for injection. 4. CLINICAL PARTICULARS longer 4.1 Therapeutic indications This medicinal product is for diagnostic use only. no LeukoScan is indicated for diagnostic imaging for determining the location and extent of infection/inflammation in bone in patients with suspected osteomyelitis, including patients with diabetic foot ulcers. LeukoScan has not been employed to diagnose osteomyelitis in patients with sickle cell anaemia. 4.2 Posology and methodproduct of administration The radiolabelled solution should be administered as an intravenous injection. After injection, any remaining portion of the reconstituted solution should be discarded. LeukoScan is not recommended for use in children. Formal studies have not been performed in patients with renal or hepatic impairment. However, due to the low dose of protein administered and the short half-life of 99mTc, dosage adjustment is probably not necessary in such patients. Medicinal Radiopharmaceutical agents should be used only by qualified personnel with appropriate government authorisation for the use and manipulation of radionuclides. 2 This radiopharmaceutical may be received, used and administered only by authorised persons in designated clinical settings.
    [Show full text]
  • Ionizing Radiation in Earth's Atmosphere and in Space Near Earth May 2011 6
    Federal Aviation Administration DOT/FAA/AM-11/9 Office of Aerospace Medicine Washington, DC 20591 Ionizing Radiation in Earth’s Atmosphere and in Space Near Earth Wallace Friedberg Kyle Copeland Civil Aerospace Medical Institute Federal Aviation Administration Oklahoma City, OK 73125 May 2011 Final Report OK-11-0024-JAH NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents thereof. ___________ This publication and all Office of Aerospace Medicine technical reports are available in full-text from the Civil Aerospace Medical Institute’s publications Web site: www.faa.gov/library/reports/medical/oamtechreports Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AM-11/9 4. Title and Subtitle 5. Report Date Ionizing Radiation in Earth's Atmosphere and in Space Near Earth May 2011 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Friedberg W, Copeland K 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) FAA Civil Aerospace Medical Institute P.O. Box 25082 11. Contract or Grant No. Oklahoma City, OK 73125 12. Sponsoring Agency name and Address 13. Type of Report and Period Covered Office of Aerospace Medicine Federal Aviation Administration 800 Independence Ave., S.W. Washington, DC 20591 14. Sponsoring Agency Code 15. Supplemental Notes 16. Abstract The Civil Aerospace Medical Institute of the FAA is charged with identifying health hazards in air travel and in commercial human space travel.
    [Show full text]
  • I Nuclide Safety Data Sheet Iodine-123
    123 Nuclide Safety Data Sheet 123 Iodine-123 I www.nchps.org I I. PHYSICAL DATA Radiation: Electrons – 3 keV (94%); 23 keV (12%); 127 keV (14%); others (<2%) Gamma & X-ray – 159 keV (83%); 27 keV (70%); 31 keV (16%); others (< 10%) a Gamma Constant: 0.277 mrem/hr per mCi @ 1.0 meter [7.478 E-5 mSv/hr per MBq @ 1.0 meter] a Half-Life [T½] : Physical T½: 13.13 hours Biological T½: 120-138 days (unbound iodine) Effective T½: ~ 12 hours (unbound iodine) Specific Activity: 1.93E6 Ci/g [7.14E16 Bq/g] max.b II. RADIOLOGICAL DATA Radiotoxicityc: 4.42 E-9 Sv/Bq (16 mrem/uCi) of 123I ingested [Thyroid] 2.25 E-9 Sv/Bq (8.3 mrem/uCi) of 123I inhaled [Thyroid] Critical Organ: Thyroid Gland Intake Routes: Ingestion, inhalation, puncture, wound, skin contamination (absorption); Radiological Hazard: External & Internal Exposure; Contamination III. SHIELDING Half Value Layer [HVL] Tenth Value Layer [TVL] Lead [Pb]b 1 mm (0.04 inches) 2 mm (0.08 inches) - The accessible dose rate should be background but must be < 2 mR/hr IV. DOSIMETRY MONITORING - Always wear radiation dosimetry monitoring badges [body & ring] whenever handling 123I - Conduct a baseline thyroid scan prior to first use of radioactive iodine - Conduct thyroid bioassay measurement [at neck just above collar bone] no earlier than 6 hours but within 72 hours of handling 1 mCi (37 MBq) or more of 123I or after any suspected intake V. DETECTION & MEASUREMENT Portable Survey Meters: Geiger-Mueller [e.g. Bicron PGM] to assess shielding effectiveness Low Energy Gamma Detector [e.g.
    [Show full text]