International Online Conference One-Parameter Semigroups of Operators

Total Page:16

File Type:pdf, Size:1020Kb

International Online Conference One-Parameter Semigroups of Operators International Online Conference One-Parameter Semigroups of Operators BOOK OF ABSTRACTS stable version from 20:21 (UTC+0), Friday 9th April, 2021 Nizhny Novgorod 2021 International Online Conference “One-Parameter Semigroups of Operators 2021” Preface International online conference One-Parameter Semigroups of Operators (OPSO 2021), 5-9 April 2021, is organized by the International laboratory of dynamical systems and applications, and research group Evolution semigroups and applications, both located in Russia, Nizhny Novgorod city. The Laboratory was created in 2019 at the National research university Higher School of Economics (HSE). Website of the Laboratory: https://nnov.hse.ru/en/bipm/dsa/ HSE is a young university (established in 1992) which rapidly become one of the leading Russian universities according to international ratings. In 2021 HSE is a large university focused on only on economics. There are departments of Economics (including Finance, Statistics etc), Law, Mathematics, Computer Science, Media and Design, Physics, Chemistry, Biotechnology, Geography and Geoinformation Technologies, Foreign Languages and some other. Website of the HSE: https://www.hse.ru/en/ The OPSO 2021 online conference has connected 106 speakers and 26 participants without a talk from all over the world. The conference covered the following topics: 1. One-parameter groups and semigroups of linear operators; 2. Nonlinear flows and semiflows; 3. Interplay between linear infinite-dimensional systems and nonlinear finite-dimensional systems; 4. Quan- tum stochastic evolutions and dynamical semigroups; 5. Further applications of semigroups in mathematical physics; 6. Related topics. Website of the OPSO 2021 conference: https://nnov.hse.ru/bipm/dsa/opso2021 Program Committee: Luigi Accardi, University of Rome Tor Vergata (Italy) Grigory Amosov, Steklov Mathematical Institute (Russia) Wolfgang Arendt, Ulm University (Germany) Jacek Banasiak, University of Pretoria (South Africa) Jochen Gl¨uck, University of Passau (Germany) John Gough, Aberystwyth University (UK) Vyacheslav Grines, Higher School of Economics (Russia) Alexander Holevo, Steklov Mathematical Institute (Russia) Yana Kinderknecht (Butko), TU Braunschweig (Germany) Sonia Mazzucchi, University of Trento (Italy) Valter Moretti, University of Trento (Italy) Hendra Nurdin, University of New South Wales (Australia) Yuri Orlov, Keldysh Institute of Applied Mathematics (Russia) Olga Pochinka, Higher School of Economics (Russia) Ivan Remizov, Higher School of Economics (Russia) Vsevolod Sakbaev, Keldysh Institute of Applied Mathematics (Russia) Nikolai Shamarov, Lomonosov Moscow State University (Russia) Evgeni Shavgulidze, Lomonosov Moscow State University (Russia) Alexander Skubachevskii, RUDN University (Russia) Oleg Smolyanov, Lomonosov Moscow State University (Russia) Dmitry Treschev, Steklov Mathematical Institute (Russia) Sascha Trostorff, Christian-Albrechts-Universit¨atzu Kiel (Germany) Dmitry Turaev, London Imperial College (UK) Mikhail Volkov, Ural Federal University (Russia) Sergey Zelik, University of Surrey (UK) Organizing Committee: Olga Pochinka (co-chairman), Ivan Remizov (co-chairman), Oleg Galkin (vice chairman), Yana Kinderknecht (Butko) (vice chairman), Iskandar Bakho- vaddinov, Elizaveta Chernyshova, Ksenia Dragunova, Vladislav Galkin, Liana Golikova, Anna Smirnova, Alexander Vedenin. 2 International Online Conference “One-Parameter Semigroups of Operators 2021” Contents 1. One-parameter groups and semigroups of linear operators 7 G. G. Amosov, E. L. Batenov. On perturbations of one-parameter semigroups deter- mined by covariant operator valued measures on the half-axis. .7 W. Arendt. Continuous Kernels for Positive Semigroups: applications to boundary problems and semilinear equations. .9 S. Arora. Local eventual positivity of operator semigroups . 10 J. Banasiak, A. B loch. Telegrapher’s systems on networks . 11 C. Batty. Rates of decay of energy via operator semigroups . 12 A. B loch. An explicit formula for the telegraph equation semigroup on a network . 13 A. Bobrowski. Semigroup-theoretic approach to thin layers: the role of transmission conditions . 14 K. Bogdan. On Hardy identities and inequalites . 16 S. Bonaccorsi. Asymptotic behaviour of a class of random evolution problems with application to combinatorial and metric graphs . 17 C. Budde. Positive Miyadera–Voigt perturbations of bi-continuous semigroups . 18 D. Daners, J. Gl¨uck, J. Mui. Asymptotic behaviour of biharmonic heat equations on unbounded domains . 19 A. Dobrick. Long-term Behaviour of Flows in Infinite Networks . 21 M. Kramar Fijavˇz.Operator semigroups on vector lattices . 23 O. E. Galkin, I. D. Remizov. Upper and lower estimates for the speed of convergence of Chernoff approximations of operator semigroups . 24 J. Gl¨uck. Positivity properties of operator semigroups . 27 F. Gregorio, Bi-Kolmogorov type operators and weighted Rellich’s inequalities . 28 D. Kinzebulatov. Fractional Kolmogorov operator and desingularizing weights . 29 K. Yu. Kotlovanov. Propagators for the Equation of Internal Waves . 30 K. Kruse, J. Meichsner, C. Seifert. Subordination for Semigroups in locally convex Spaces . 33 K. R. Madou. On admissible singular drifts of symmetric α-stable process . 34 N. A. Manakova, K. V. Perevozchikova. Degenerate Nonlinear Semigroups for General Mathematical Filtration Boussinesq Model . 35 N. A. Manakova, G. A. Sviridyuk. Positive Holomorphic Semigroups of Operators. Sobolev Type Equations . 37 I. V. Melnikova, U. A. Alekseeva, V. A. Bovkun. Operator semigroups associated with stochastic processes within the framework of the semigroup classification and Gelfand-Shilov classification . 40 G. Metafune, L. Negro, C. Spina. Lp estimates for the Caffarelli-Silvestre extension operators . 41 D. Mugnolo. Random evolution equations on graphs and beyond . 42 S. Piskarev. Approximation of fractional equations in Banach spaces . 43 D. Ploss. The Bi-Laplacian with Wentzell boundary conditions on Lipschitz domains . 44 V. Recupero. Analytic semigroups in the quaternionic framework . 45 I. D. Remizov. How to obtain exp(−itH) for arbitrary self-adjoint H if for each t > 0 you know exp(−tH) or exp(tH) or even less . 46 R. Rudnicki. Asymptotic decomposition of substochastic semigroups and applications 49 F. L. Schwenninger. Around Baillon’s theorem on maximal regularity . 50 D. E. Shafranov, O. G. Kitaeva, G. A. Sviridiyk. Degenerate analytic resolving groups of operators for solutions of the Barenblatt–Zheltov–Kochina equation in “noise” spaces on a Riemannian manifold . 51 3 International Online Conference “One-Parameter Semigroups of Operators 2021” A. L. Skubachevskii. The Kato square root problem for some classes of elliptic func- tional differential operators with smooth coefficients . 54 N. N. Solovyova, S. A. Zagrebina, G. A. Sviridyuk, Investigation of positive solutions to the Sobolev-type equations in sequence spaces . 55 S. Trostorff. Exponential Stability for Port-Hamiltonian Systems . 58 J. Zhai. Extinction time of stochastic SIRS epidemic models: application of Chernoff approximation for bi-continuous semigroups . 59 2. Nonlinear flows and semiflows 62 M. M. Anikushin. Quadratic Lyapunov functionals and geometry of inertial manifolds 62 A. A. Dorogovtsev. Stochastic semigroups and stochastic differential equations related to stochastic flows with singularities . 66 F. Fagnola. Dilations of classical diffusion processes via quantum stochastic calculus . 67 E. V. Glinyanaya. Disordering in a discrete-time stochastic flows . 68 N. S. Goncharov. Numerical research of the Barenblatt-Zheltov-Kochina model on the interval with wentzell boundary conditions . 69 V. Grines. On topology of ambient manifolds admitting A-diffeomorphisms . 70 A. S. Konkina, S. A. Zagrebina, G. A. Sviridyuk. Mathematical model of traffic flow at a regulated intersection . 71 A. Kostianko. Bi-Lipschitz Mane projections and finite-dimensional reduction for com- plex Ginzburg-Landau equation . 74 V. E. Kruglov. Topological conjugacy Morse-Smale flows with finite number of moduli on surfaces . 75 L. M. Lerman, N. E. Kulagin. Resonant localized patterns in the Swift-Hohenberg equation . 77 R. Longo. The massive modular Hamiltonian . 79 V. S. Medvedev, E. V. Zhuzhoma. Two-dimensional attractors of A-flows and fibered links on 3-manifolds . 80 S. E. Pastukhova, large-time asymptotics of fundamental solutions for diffusion equa- tions in periodic media . 81 O. Pochinka. On the embedding of Morse-Smale diffeomorphisms in a topological flow 82 G. V. Riabov. Coalescing stochastic flows on metric graphs . 83 D. D. Shubin, O. V. Pochinka. On non-singular flows on n-manifolds with two limit cycles . 85 3. Interplay between linear infinite-dimensional systems and nonlinear finite- dimensional systems 87 E. M. Bollt. Geometry and Good Dictionaries for Koopman Analysis of Dynamical Systems . 87 N. Edeko. Betti numbers and the spectrum of dynamics on metrizable compact spaces 88 G. Froyland. Transfer operators and dynamical systems . 89 H. Kreidler. Koopmanism for dynamical systems on completely regular spaces . 90 A. Mauroy. Koopman operator framework for nonlinear identification . 91 C. Schlosser, M. Korda. A linear program approach to global attractors . 92 B. O. Volkov. L´evyLaplacian and gauge fields . 93 4. Quantum stochastic evolutions and dynamical semigroups 95 L. Accardi. Stochastic Koopman program, quantum extensions of classical evolutions and a unified approach to classical and quantum dynamical systems . 95 M. Dubashinskiy. Long composition of raisings and
Recommended publications
  • Quantum Leap FINAL Case Study
    Case study A Quantum Leap at INI Case study: Mathematics for Quantum Information “The application of quantum technologies to In their original proposal, two years earlier, MQI encryption algorithms threatens to dramatically programme organisers Richard Jozsa (Cambridge), impact the US government’s ability to both protect Noah Linden (Bristol), Peter Shor (MIT) and its communications and eavesdrop on the Andreas Winter (Bristol/CQT, Singapore) had communications of foreign governments,” correctly anticipated the readiness of their according to an internal document leaked by discipline for such breakthroughs predicting whistle-blower Edward Snowden. That the UK Government takes quantum computing seriously “we see this as a moment of substantial scientific is evinced by its commitment to “provide £270 opportunity: we believe we are at the beginning million over 5 years to fund a programme to of a period in the subject where diverse areas of support translation of the UK’s world leading mathematics will play an increasing important quantum research into application and new role. A Newton Institute programme at this time industries – from quantum computation to secure offers the possibility of major influence in the communication”, as announced by Chancellor of speed and direction of the field”. the Exchequer George Osborne in his 2013 Autumn Statement. This statement by the UK In October 2013, Alexander Holevo, a pioneer in Chancellor came during the closing weeks of an the field of Quantum Information Science and INI programme on Mathematics for Quantum winner of the Humbolt Prize, gave the Rothschild Information (MQI) and within days of an Lecture for the MQI programme.
    [Show full text]
  • Analysis of Quantum Error-Correcting Codes: Symplectic Lattice Codes and Toric Codes
    Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes Thesis by James William Harrington Advisor John Preskill In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2004 (Defended May 17, 2004) ii c 2004 James William Harrington All rights Reserved iii Acknowledgements I can do all things through Christ, who strengthens me. Phillipians 4:13 (NKJV) I wish to acknowledge first of all my parents, brothers, and grandmother for all of their love, prayers, and support. Thanks to my advisor, John Preskill, for his generous support of my graduate studies, for introducing me to the studies of quantum error correction, and for encouraging me to pursue challenging questions in this fascinating field. Over the years I have benefited greatly from stimulating discussions on the subject of quantum information with Anura Abeyesinge, Charlene Ahn, Dave Ba- con, Dave Beckman, Charlie Bennett, Sergey Bravyi, Carl Caves, Isaac Chenchiah, Keng-Hwee Chiam, Richard Cleve, John Cortese, Sumit Daftuar, Ivan Deutsch, Andrew Doherty, Jon Dowling, Bryan Eastin, Steven van Enk, Chris Fuchs, Sho- hini Ghose, Daniel Gottesman, Ted Harder, Patrick Hayden, Richard Hughes, Deborah Jackson, Alexei Kitaev, Greg Kuperberg, Andrew Landahl, Chris Lee, Debbie Leung, Carlos Mochon, Michael Nielsen, Smith Nielsen, Harold Ollivier, Tobias Osborne, Michael Postol, Philippe Pouliot, Marco Pravia, John Preskill, Eric Rains, Robert Raussendorf, Joe Renes, Deborah Santamore, Yaoyun Shi, Pe- ter Shor, Marcus Silva, Graeme Smith, Jennifer Sokol, Federico Spedalieri, Rene Stock, Francis Su, Jacob Taylor, Ben Toner, Guifre Vidal, and Mas Yamada. Thanks to Chip Kent for running some of my longer numerical simulations on a computer system in the High Performance Computing Environments Group (CCN-8) at Los Alamos National Laboratory.
    [Show full text]
  • Quantum Information Theory by Michael Aaron Nielsen
    Quantum Information Theory By Michael Aaron Nielsen B.Sc., University of Queensland, 1993 B.Sc. (First Class Honours), Mathematics, University of Queensland, 1994 M.Sc., Physics, University of Queensland, 1998 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Physics The University of New Mexico Albuquerque, New Mexico, USA December 1998 c 1998, Michael Aaron Nielsen ii Dedicated to the memory of Michael Gerard Kennedy 24 January 1951 – 3 June 1998 iii Acknowledgments It is a great pleasure to thank the many people who have contributed to this Dissertation. My deepest thanks goes to my friends and family, especially my parents, Howard and Wendy, for their support and encouragement. Warm thanks also to the many other people who have con- tributed to this Dissertation, especially Carl Caves, who has been a terrific mentor, colleague, and friend; to Gerard Milburn, who got me started in physics, in research, and in quantum in- formation; and to Ben Schumacher, whose boundless enthusiasm and encouragement has provided so much inspiration for my research. Throughout my graduate career I have had the pleasure of many enjoyable and helpful discussions with Howard Barnum, Ike Chuang, Chris Fuchs, Ray- mond Laflamme, Manny Knill, Mark Tracy, and Wojtek Zurek. In particular, Howard Barnum, Carl Caves, Chris Fuchs, Manny Knill, and Ben Schumacher helped me learn much of what I know about quantum operations, entropy, and distance measures for quantum information. The material reviewed in chapters 3 through 5 I learnt in no small measure from these people. Many other friends and colleagues have contributed to this Dissertation.
    [Show full text]
  • Entropy in Quantum Information Theory – Communication and Cryptography
    UNIVERSITY OF COPENHAGEN Entropy in Quantum Information Theory { Communication and Cryptography by Christian Majenz This thesis has been submitted to the PhD School of The Faculty of Science, University of Copenhagen August 2017 Christian Majenz Department of Mathematical Sciences Universitetsparken 5 2100 Copenhagen Denmark [email protected] PhD Thesis Date of submission: 31.05.2017 Advisor: Matthias Christandl, University of Copenhagen Assessment committee: Berfinnur Durhuus, University of Copenhagen Omar Fawzi, ENS Lyon Iordanis Kerenidis, University Paris Diderot 7 c by the author ISBN: 978-87-7078-928-8 \You should call it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, no one really knows what entropy really is, so in a debate you will always have the advantage." John von Neumann, to Claude Shannon Abstract Entropies have been immensely useful in information theory. In this Thesis, several results in quantum information theory are collected, most of which use entropy as the main mathematical tool. The first one concerns the von Neumann entropy. While a direct generalization of the Shannon entropy to density matrices, the von Neumann entropy behaves differently. The latter does not, for example, have the monotonicity property that the latter possesses: When adding another quantum system, the entropy can decrease. A long-standing open question is, whether there are quantum analogues of unconstrained non-Shannon type inequalities. Here, a new constrained non-von-Neumann type inequality is proven, a step towards a conjectured unconstrained inequality by Linden and Winter.
    [Show full text]
  • Photonic Qubits for Quantum Communication
    Photonic Qubits for Quantum Communication Exploiting photon-pair correlations; from theory to applications Maria Tengner Doctoral Thesis KTH School of Information and Communication Technology Stockholm, Sweden 2008 TRITA-ICT/MAP AVH Report 2008:13 KTH School of Information and ISSN 1653-7610 Communication Technology ISRN KTH/ICT-MAP/AVH-2008:13-SE Electrum 229 ISBN 978-91-7415-005-6 SE-164 40 Kista Sweden Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i fotonik fredagen den 13 juni 2008 klockan 10.00 i Sal D, Forum, KTH Kista, Kungl Tekniska högskolan, Isafjordsgatan 39, Kista. © Maria Tengner, May 2008 iii Abstract For any communication, the conveyed information must be carried by some phys- ical system. If this system is a quantum system rather than a classical one, its behavior will be governed by the laws of quantum mechanics. Hence, the proper- ties of quantum mechanics, such as superpositions and entanglement, are accessible, opening up new possibilities for transferring information. The exploration of these possibilities constitutes the field of quantum communication. The key ingredient in quantum communication is the qubit, a bit that can be in any superposition of 0 and 1, and that is carried by a quantum state. One possible physical realization of these quantum states is to use single photons. Hence, to explore the possibilities of optical quantum communication, photonic quantum states must be generated, transmitted, characterized, and detected with high precision. This thesis begins with the first of these steps: the implementation of single-photon sources generat- ing photonic qubits.
    [Show full text]
  • Quantum Information Theory
    Quantum Information Theory By Michael Aaron Nielsen B.Sc., University of Queensland, 1993 B.Sc. (First Class Honours), Mathematics, University of Queensland, 1994 M.Sc., Physics, University of Queensland, 1998 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Physics The University of New Mexico arXiv:quant-ph/0011036v1 9 Nov 2000 Albuquerque, New Mexico, USA December 1998 c 1998, Michael Aaron Nielsen ii Dedicated to the memory of Michael Gerard Kennedy 24 January 1951 – 3 June 1998 iii Acknowledgments It is a great pleasure to thank the many people who have contributed to this Dissertation. My deepest thanks goes to my friends and family, especially my parents, Howard and Wendy, for their support and encouragement. Warm thanks also to the many other people who have con- tributed to this Dissertation, especially Carl Caves, who has been a terrific mentor, colleague, and friend; to Gerard Milburn, who got me started in physics, in research, and in quantum in- formation; and to Ben Schumacher, whose boundless enthusiasm and encouragement has provided so much inspiration for my research. Throughout my graduate career I have had the pleasure of many enjoyable and helpful discussions with Howard Barnum, Ike Chuang, Chris Fuchs, Ray- mond Laflamme, Manny Knill, Mark Tracy, and Wojtek Zurek. In particular, Howard Barnum, Carl Caves, Chris Fuchs, Manny Knill, and Ben Schumacher helped me learn much of what I know about quantum operations, entropy, and distance measures for quantum information. The material reviewed in chapters 3 through 5 I learnt in no small measure from these people.
    [Show full text]
  • IEEE Information Theory Society Newsletter
    IEEE Information Theory Society Newsletter Vol. 67, No. 2, June 2017 EDITOR: Michael Langberg, Ph.D. ISSN 1059-2362 Editorial committee: Alexander Barg, Giuseppe Caire, Meir Feder, Joerg Kliewer, Frank Kschischang, Prakash Narayan, Parham Noorzad, Anand Sarwate, Andy Singer, and Sergio Verdú. President’s Column Rüdiger Urbanke Some of you might have noticed a monthly itsoc.org/news-events/recent-news/call-for- email from ITSOC in your mail box with the short-video-proposal table of contents of the upcoming IT Transac- tions (if not, check you spam filter and make Talking about movies. Mark Levinson, the di- sure you paid your dues!). This was suggest- rector of the Shannon movie, has started edit- ed by Prakash Narayan, our Editor-in-Chief. ing the material from the February shoot and Thanks also to Elza Erkip, our First Vice Presi- is making plans for additional shooting of dent, for her support, and to Anand Sarwate, flashback scenes and interviews. He has also the Chair of the Online Committee, for posting begun speaking to a composer and graphics this information on our web page. We hope people. The role of Shannon has already been that you like the idea. The early feedback has cast—sorry, you can stop practicing juggling. been very positive. But we can do even better. But if you have ideas about how best to ex- Dave Forney has suggested that we bring the plain central concepts of information theory format into the 21st century and perhaps com- to a large audience, let us know. bine with regular communication to our mem- bers.
    [Show full text]
  • IEEE Information Theory Society Newsletter
    IEEE Information Theory Society Newsletter Vol. 66, No. 4, December 2016 Editor: Michael Langberg ISSN 1059-2362 Editorial committee: Frank Kschischang, Giuseppe Caire, Meir Feder, Tracey Ho, Joerg Kliewer, Parham Noorzad, Anand Sarwate, Andy Singer, and Sergio Verdú President’s Column Alon Orlitsky One should never start with a cliche. So let me that would bring and curate information the- end with one: where did 2016 go? It seems like oretic lectures for large audiences. yesterday that I wrote my first column, and it’s already time to reflect on a year gone by? • Jeff Andrews and Elza Erkip are heading a BoG ad-hoc committee exploring the cre- And a remarkable year it was! Each of earth’s ation of a new publication connecting corners and all of life’s walks were abuzz with information theory to other topics and activity and change, and information theory communities, with two main formats con- followed suit. Adding to our society’s regu- sidered: a special topics journal, and a larly hectic conference meeting/publication popular magazine. calendar, we also celebrated Shannon’s 100th anniversary with fifty worldwide centennials, • Christina Fragouli and Anna Scaglione are numerous write-ups in major journals and co-authoring a children’s book on informa- magazines, and a coveted Google Doodle on tion theory, the first chapter is completed Shannon’s birthday. For the last time let me and the rest are expected next year. thank Christina Fragouli and Rudi Urbanke for co-chairing the hyperactive Centennials Committee. As the holidays ushered in, twelve-shy-one society members received jolly good tidings.
    [Show full text]
  • Systematic Lossy Source Transmission Over Gaussian Time
    2013 IEEE International Symposium on Information Theory (ISIT 2013) Istanbul, Turkey 7-12 July 2013 Pages 1-886 IEEE Catalog Number: CFP13SIF-POD ISBN: 978-1-4799-0444-0 1/4 Program 2013 IEEE International Symposium on Information Theory Single-User Source-Channel Coding Systematic Lossy Source Transmission over Gaussian Time-Varying Channels Iñaki Estella Aguerri (Centre Tecnològic de la Comunicació de Catalunya (CTTC), Spain), Deniz Gündüz (Imperial College London, United Kingdom) 1 On Zero Delay Source-Channel Coding: Functional Properties and Linearity Conditions Emrah Akyol (UCSB, USA), Kumar Viswanatha (UCSB, USA), Kenneth Rose (University of California, Santa Barbara, USA), Tor A. Ramstad (Norwegian University of Science and Technology, Norway) 6 Gaussian HDA Coding with Bandwidth Expansion and Side Information at the Decoder Erman Köken (UC Riverside, USA), Ertem Tuncel (UC Riverside, USA) 11 Dynamic Joint Source-Channel Coding with Feedback Tara Javidi (UCSD, USA), Andrea Goldsmith (Stanford University, USA) 16 Interference and Feedback Bursty Interference Channel with Feedback I-Hsiang Wang (EPFL, Switzerland), Changho Suh (KAIST, Korea), Suhas Diggavi (University of California Los Angeles, USA), Pramod Viswanath (University of Illinois, Urbana-Champaign, USA) 21 Interference Channel with Intermittent Feedback Can Karakus (University of California, Los Angeles, USA), I-Hsiang Wang (EPFL, Switzerland), Suhas Diggavi (University of California Los Angeles, USA) 26 Interactive Interference Alignment Quan Geng (University of Illinois
    [Show full text]
  • Download -.:: Natural Sciences Publishing
    Quant. Phys. Lett. 4, No. 2, 17-30 (2015) 17 Quantum Physics Letters An International Journal http://dx.doi.org/10.12785/qpl/040201 Introduction to Quantum Information Theory and Outline of Two Applications to Physics: the Black Hole Information Paradox and the Renormalization Group Information Flow 1,2, Fabio Grazioso ∗ 1 Research associate in science education at Università degli Studi di Napoli Federico II, Italy, 2 INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada. Received: 7 Jun. 2015, Revised: 16 Jul. 2015, Accepted: 17 Jul. 2015 Published online: 1 Aug. 2015 Abstract: This review paper is intended for scholars with different backgrounds, possibly in only one of the subjects covered, and therefore little background knowledge is assumed. The first part is an introduction to classical and quantum information theory (CIT, QIT): basic definitions and tools of CIT are introduced, such as the information content of a random variable, the typical set, and some principles of data compression. Some concepts and results of QIT are then introduced, such as the qubit, the pure and mixed states, the Holevo theorem, the no-cloning theorem, and the quantum complementarity. In the second part, two applications of QIT to open problems in theoretical physics are discussed. The black hole (BH) information paradox is related to the phenomenon of the Hawking radiation (HR). Considering a BH starting in a pure state, after its complete evaporation only the Hawking radiation will remain, which is shown to be in a mixed state. This either describes a non-unitary evolution of an isolated system, contradicting the evolution postulate of quantum mechanics and violating the no-cloning theorem, or it implies that the initial information content can escape the BH, therefore contradicting general relativity.
    [Show full text]
  • A Survey on Quantum Channel Capacities
    1 A Survey on Quantum Channel Capacities Laszlo Gyongyosi,1;2;3;∗ Member, IEEE, Sandor Imre,2 Senior Member, IEEE, and Hung Viet Nguyen,1 Member, IEEE 1School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK 2Department of Networked Systems and Services, Budapest University of Technology and Economics, Budapest, H-1117 Hungary 3MTA-BME Information Systems Research Group, Hungarian Academy of Sciences, Budapest, H-1051 Hungary Abstract—Quantum information processing exploits the quan- channel describes the capability of the channel for delivering tum nature of information. It offers fundamentally new solutions information from the sender to the receiver, in a faithful and in the field of computer science and extends the possibilities recoverable way. Thanks to Shannon we can calculate the to a level that cannot be imagined in classical communica- tion systems. For quantum communication channels, many new capacity of classical channels within the frames of classical 1 capacity definitions were developed in comparison to classical information theory [477]. However, the different capacities counterparts. A quantum channel can be used to realize classical of quantum channels have been discovered just in the ‘90s, information transmission or to deliver quantum information, and there are still many open questions about the different such as quantum entanglement. Here we review the properties capacity measures. of the quantum communication channel, the various capacity measures and the fundamental differences between the classical Many new capacity definitions exist for quantum channels in and quantum channels. comparison to a classical communication channel. In the case of a classical channel, we can send only classical information Index Terms—Quantum communication, quantum channels, quantum information, quantum entanglement, quantum Shannon while quantum channels extend the possibilities, and besides theory.
    [Show full text]
  • Introduction to Quantum Information Theory and Outline of Two
    Introduction to quantum information theory and outline of two applications to physics: the black hole information paradox and the renormalization group information flow Fabio Grazioso Research associate - Science Education at Università degli Studi di Napoli Federico II, Italy, Postdoctoral fellow at INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada. Abstract This review paper is intended for scholars with different backgrounds, possibly in only one of the subjects covered, and therefore little background knowledge is assumed. The first part is an introduction to classical and quantum information theory (CIT, QIT): basic definitions and tools of CIT are introduced, such as the information content of a random variable, the typical set, and some principles of data compression. Some concepts and results of QIT are then introduced, such as the qubit, the pure and mixed states, the Holevo theorem, the no-cloning theorem, and the quantum complementarity. In the second part, two applications of QIT to open problems in theoretical physics are discussed. The black hole (BH) information paradox is related to the phenomenon of the Hawking radiation (HR). Consid- ering a BH starting in a pure state, after its complete evaporation only the Hawking radiation will remain, which is shown to be in a mixed state. This either describes a non-unitary evolution of an isolated system, contradicting the evolution postulate of quantum mechanics and violating the no-cloning theorem, or it implies that the initial information content can escape the BH, therefore contradicting general relativity. The progress toward the solution of the paradox is discussed. The renormalization group (RG) aims at the extraction of the macroscopic description of a physical system from its microscopic description.
    [Show full text]