Analysis of Quantum Error-Correcting Codes: Symplectic Lattice Codes and Toric Codes

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Quantum Error-Correcting Codes: Symplectic Lattice Codes and Toric Codes Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes Thesis by James William Harrington Advisor John Preskill In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2004 (Defended May 17, 2004) ii c 2004 James William Harrington All rights Reserved iii Acknowledgements I can do all things through Christ, who strengthens me. Phillipians 4:13 (NKJV) I wish to acknowledge first of all my parents, brothers, and grandmother for all of their love, prayers, and support. Thanks to my advisor, John Preskill, for his generous support of my graduate studies, for introducing me to the studies of quantum error correction, and for encouraging me to pursue challenging questions in this fascinating field. Over the years I have benefited greatly from stimulating discussions on the subject of quantum information with Anura Abeyesinge, Charlene Ahn, Dave Ba- con, Dave Beckman, Charlie Bennett, Sergey Bravyi, Carl Caves, Isaac Chenchiah, Keng-Hwee Chiam, Richard Cleve, John Cortese, Sumit Daftuar, Ivan Deutsch, Andrew Doherty, Jon Dowling, Bryan Eastin, Steven van Enk, Chris Fuchs, Sho- hini Ghose, Daniel Gottesman, Ted Harder, Patrick Hayden, Richard Hughes, Deborah Jackson, Alexei Kitaev, Greg Kuperberg, Andrew Landahl, Chris Lee, Debbie Leung, Carlos Mochon, Michael Nielsen, Smith Nielsen, Harold Ollivier, Tobias Osborne, Michael Postol, Philippe Pouliot, Marco Pravia, John Preskill, Eric Rains, Robert Raussendorf, Joe Renes, Deborah Santamore, Yaoyun Shi, Pe- ter Shor, Marcus Silva, Graeme Smith, Jennifer Sokol, Federico Spedalieri, Rene Stock, Francis Su, Jacob Taylor, Ben Toner, Guifre Vidal, and Mas Yamada. Thanks to Chip Kent for running some of my longer numerical simulations on a computer system in the High Performance Computing Environments Group (CCN-8) at Los Alamos National Laboratory. Some simulations were also run on the Pentium Pro based Beowulf Cluster (naegling) computer system operated by the Caltech CACR. I am very grateful for helpful comments from Charlene Ahn, Chris Lee, and Graeme Smith on draft versions of my thesis chapters. A special thanks to Francis Su, Winnie Wang, Dawn Yang, and Esther Yong for working alongside me while I was writing parts of this thesis. Also, thanks to Robert Dirks for being such a patient and fun bridge partner to play with this iv past year, which provided a welcome break from work. I would like to acknowledge some of the teachers that have encouraged me and helped lead me to this point: David Crane, Fred DiCesare, Maureen Dinero, Autumn Finlan, Dan Gauthier, Linda Hagreen, Calvin Howell, David Kraines, Jane LaVoie, Harold Layton, Claude Meyers, Mary Champagne-Myers, Kate Ross, Anthony Ruggieri, David Schaeffer, Roxanne Springer, and Stephanos Venakides. Additionally, I want to acknowledge the sharpening role of the accountabil- ity partners in my life over the past few years: James Bowen, Isaac Chenchiah, Brenton Chinn, Gene Chu, Tony Chu, Stephan Ichiriu, Frank Reyes, and Kenji Shimibukuro. I also appreciate my brothers and sisters in the Sedaqah groups I have belonged to at Evergreen, as well as my fellow grad students in the Caltech Christian Fellowship and UCLA Graduate Christian Fellowship. Soli Deo Gloria. v Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes by James William Harrington In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Abstract Quantum information theory is concerned with identifying how quantum mechan- ical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communi- cation, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g., factoring large numbers, securely com- municating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to iden- tifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against er- rors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system’s continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and vi search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present a local classical processing scheme for correcting errors on toric codes, which demonstrates that quantum information can be maintained in two dimensions by purely local (quantum and classical) resources. vii Contents 1 Introduction 1 1.1 Overview . 1 1.2 Introduction to quantum error correction . 2 1.3 Key features of lattices . 6 2 Achievable rates for the Gaussian quantum channel 9 2.1 Abstract . 9 2.2 Introduction . 9 2.3 The Gaussian quantum channel . 11 2.4 Lattice codes for continuous quantum variables . 16 2.5 Achievable rates from efficient sphere packings . 20 2.6 Improving the rate . 22 2.7 Achievable rates from concatenated codes . 26 2.8 The Gaussian classical channel . 33 2.9 Conclusions . 37 3 Family of symplectic self-dual lattice codes 39 3.1 Abstract . 39 3.2 Introduction . 39 3.3 Constructing oscillator codes . 40 3.4 Program . 42 3.4.1 Parameterization . 42 3.4.2 Algorithm . 44 viii 3.5 Results . 46 3.6 Error models . 50 3.6.1 The square lattice Z2 ..................... 50 3.6.2 The hexagonal lattice A2 ................... 51 3.6.3 The checkerboard lattice D4 . 53 3.6.4 Bavard’s symplectic lattice F6 . 56 3.6.5 The exceptional Lie algebra lattice E8 . 56 3.7 Achievable rates . 57 3.8 Conclusion . 60 4 Accuracy threshold for toric codes 61 4.1 Abstract . 61 4.2 Introduction . 62 4.3 Models . 65 4.3.1 Random-bond Ising model . 65 4.3.2 Random-plaquette gauge model . 73 4.3.3 Further generalizations . 77 4.4 Accuracy threshold for quantum memory . 78 4.4.1 Toric codes . 78 4.4.2 Perfect measurements and the random-bond Ising model . 84 4.4.3 Faulty measurements and the random-plaquette gauge model 86 4.5 Numerics . 90 4.5.1 Method . 90 4.5.2 Random-bond Ising model . 92 4.5.3 Random-plaquette gauge model . 98 4.5.4 Anisotropic random-plaquette gauge model . 102 4.5.5 The failure probability at finite temperature . 104 4.6 Conclusions . 106 ix 5 Protecting topological quantum information by local rules 109 5.1 Abstract . 109 5.2 Introduction . 110 5.3 Robust cellular automata . 110 5.4 Toric codes and implementation . 112 5.4.1 Toric code stabilizers . 112 5.4.2 Hardware layout . 113 5.4.3 Error model . 113 5.5 Processor memory . 114 5.5.1 Memory fields . 114 5.5.2 Memory processing . 117 5.6 Local rules . 118 5.7 Error decomposition proof . 124 5.8 Lower bound on accuracy threshold . 128 5.8.1 Correction of level-0 errors . 128 5.8.2 Correction of higher level errors . 128 5.8.3 Classical errors . 134 5.9 Numerical results . 135 5.10 Conclusion . 137 A Translation of “Hyperbolic families of symplectic lattices” 140 A.1 Introduction . 140 A.2 General study of hyperbolic families . 143 A.2.1 Symplectic lattices and hyperbolic families . 143 A.2.2 Symplectic actions on the families . 146 A.2.3 Geometric study of lengths . 148 A.2.4 Relative eutaxy . 150 A.2.5 Principal length functions. Principal points . 153 A.2.6 Dirichlet-Vorono¨ıand Delaunay decompositions (associated with the principal points) . 156 x A.2.7 Study in the neighborhood of points. Vorono¨ı’s algorithm and finitude . 161 A.2.8 Morse’s theory . 166 A.3 Examples . 168 A.3.1 Families An. Forms F2n . 168 A.3.2 Families An (continued). Forms G2n . 170 A.3.3 Families An (continued). Forms H2n(ϕ)(ϕ ∈ SL2(Z)) . 173 A.3.4 Families An (continued). Forms J4m−2 . 177 A.3.5 Extremal points of families An for 1 ≤ n ≤ 16 . 178 A.3.6 An interesting hyperbolic family . 183 A.3.7 Other examples . 184 xi List of Figures 2.1 Two ways to estimate the rate achieved by a lattice code. 24 2.2 Rates achieved by concatenated codes, compared to the one-shot coherent information optimized over Gaussian input states. 30 2 2 2 2.3 The slowly varying function C , defined by R = log2(C /σ ), where R is the rate achievable with concatenated codes. 31 2.4 Rates for the Gaussian classical channel achievable with concate- nated codes, compared to the Shannon capacity. 36 3.1 The normalizer lattice of the Z2 encoding. 52 3.2 The normalizer lattice of the A2 encoding. 54 3.3 Failure probability of several lattice codes over the Gaussian channel 57 3.4 Achievable rates of several lattice codes over the Gaussian channel 59 4.1 The chain E of antiferromagnetic bonds (darkly shaded) and the chain E0 of excited bonds (lightly shaded), in the two-dimensional random-bond Ising model.
Recommended publications
  • Painstakingly-Edited Typeset Lecture Notes
    Physics 239: Topology from Physics Winter 2021 Lecturer: McGreevy These lecture notes live here. Please email corrections and questions to mcgreevy at physics dot ucsd dot edu. Last updated: May 26, 2021, 14:36:17 1 Contents 0.1 Introductory remarks............................3 0.2 Conventions.................................8 0.3 Sources....................................9 1 The toric code and homology 10 1.1 Cell complexes and homology....................... 21 1.2 p-form ZN toric code............................ 23 1.3 Some examples............................... 26 1.4 Higgsing, change of coefficients, exact sequences............. 32 1.5 Independence of cellulation......................... 36 1.6 Gapped boundaries and relative homology................ 39 1.7 Duality.................................... 42 2 Supersymmetric quantum mechanics and cohomology, index theory, Morse theory 49 2.1 Supersymmetric quantum mechanics................... 49 2.2 Differential forms consolidation...................... 61 2.3 Supersymmetric QM and Morse theory.................. 66 2.4 Global information from local information................ 74 2.5 Homology and cohomology......................... 77 2.6 Cech cohomology.............................. 80 2.7 Local reconstructability of quantum states................ 86 3 Quantum Double Model and Homotopy 89 3.1 Notions of `same'.............................. 89 3.2 Homotopy equivalence and cohomology.................. 90 3.3 Homotopy equivalence and homology................... 91 3.4 Morse theory and homotopy
    [Show full text]
  • (CST Part II) Lecture 14: Fault Tolerant Quantum Computing
    Quantum Computing (CST Part II) Lecture 14: Fault Tolerant Quantum Computing The history of the universe is, in effect, a huge and ongoing quantum computation. The universe is a quantum computer. Seth Lloyd 1 / 21 Resources for this lecture Nielsen and Chuang p474-495 covers the material of this lecture. 2 / 21 Why we need fault tolerance Classical computers perform complicated operations where bits are repeatedly \combined" in computations, therefore if an error occurs, it could in principle propagate to a huge number of other bits. Fortunately, in modern digital computers errors are so phenomenally unlikely that we can forget about this possibility for all practical purposes. Errors do, however, occur in telecommunications systems, but as the purpose of these is the simple transmittal of some information, it suffices to perform error correction on the final received data. In a sense, quantum computing is the worst of both of these worlds: errors do occur with significant frequency, and if uncorrected they will propagate, rendering the computation useless. Thus the solution is that we must correct errors as we go along. 3 / 21 Fault tolerant quantum computing set-up For fault tolerant quantum computing: We use encoded qubits, rather than physical qubits. For example we may use the 7-qubit Steane code to represent each logical qubit in the computation. We use fault tolerant quantum gates, which are defined such thata single error in the fault tolerant gate propagates to at most one error in each encoded block of qubits. By a \block of qubits", we mean (for example) each block of 7 physical qubits that represents a logical qubit using the Steane code.
    [Show full text]
  • Pilot Quantum Error Correction for Global
    Pilot Quantum Error Correction for Global- Scale Quantum Communications Laszlo Gyongyosi*1,2, Member, IEEE, Sandor Imre1, Member, IEEE 1Quantum Technologies Laboratory, Department of Telecommunications Budapest University of Technology and Economics 2 Magyar tudosok krt, H-1111, Budapest, Hungary 2Information Systems Research Group, Mathematics and Natural Sciences Hungarian Academy of Sciences H-1518, Budapest, Hungary *[email protected] Real global-scale quantum communications and quantum key distribution systems cannot be implemented by the current fiber and free-space links. These links have high attenuation, low polarization-preserving capability or extreme sensitivity to the environment. A potential solution to the problem is the space-earth quantum channels. These channels have no absorption since the signal states are propagated in empty space, however a small fraction of these channels is in the atmosphere, which causes slight depolarizing effect. Furthermore, the relative motion of the ground station and the satellite causes a rotation in the polarization of the quantum states. In the current approaches to compensate for these types of polarization errors, high computational costs and extra physical apparatuses are required. Here we introduce a novel approach which breaks with the traditional views of currently developed quantum-error correction schemes. The proposed solution can be applied to fix the polarization errors which are critical in space-earth quantum communication systems. The channel coding scheme provides capacity-achieving communication over slightly depolarizing space-earth channels. I. Introduction Quantum error-correction schemes use different techniques to correct the various possible errors which occur in a quantum channel. In the first decade of the 21st century, many revolutionary properties of quantum channels were discovered [12-16], [19-22] however the efficient error- correction in quantum systems is still a challenge.
    [Show full text]
  • Superconducting Quantum Simulator for Topological Order and the Toric Code
    Superconducting Quantum Simulator for Topological Order and the Toric Code Mahdi Sameti,1 Anton Potoˇcnik,2 Dan E. Browne,3 Andreas Wallraff,2 and Michael J. Hartmann1 1Institute of Photonics and Quantum Sciences, Heriot-Watt University Edinburgh EH14 4AS, United Kingdom 2Department of Physics, ETH Z¨urich,CH-8093 Z¨urich,Switzerland 3Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom (Dated: March 20, 2017) Topological order is now being established as a central criterion for characterizing and classifying ground states of condensed matter systems and complements categorizations based on symmetries. Fractional quantum Hall systems and quantum spin liquids are receiving substantial interest because of their intriguing quantum correlations, their exotic excitations and prospects for protecting stored quantum information against errors. Here we show that the Hamiltonian of the central model of this class of systems, the Toric Code, can be directly implemented as an analog quantum simulator in lattices of superconducting circuits. The four-body interactions, which lie at its heart, are in our concept realized via Superconducting Quantum Interference Devices (SQUIDs) that are driven by a suitably oscillating flux bias. All physical qubits and coupling SQUIDs can be individually controlled with high precision. Topologically ordered states can be prepared via an adiabatic ramp of the stabilizer interactions. Strings of qubit operators, including the stabilizers and correlations along non-contractible loops, can be read out via a capacitive coupling to read-out resonators. Moreover, the available single qubit operations allow to create and propagate elementary excitations of the Toric Code and to verify their fractional statistics.
    [Show full text]
  • Some Open Problems in Quantum Information Theory
    Some Open Problems in Quantum Information Theory Mary Beth Ruskai∗ Department of Mathematics, Tufts University, Medford, MA 02155 [email protected] June 14, 2007 Abstract Some open questions in quantum information theory (QIT) are described. Most of them were presented in Banff during the BIRS workshop on Operator Structures in QIT 11-16 February 2007. 1 Extreme points of CPT maps In QIT, a channel is represented by a completely-positive trace-preserving (CPT) map Φ: Md1 7→ Md2 , which is often written in the Choi-Kraus form X † X † Φ(ρ) = AkρAk with AkAk = Id1 . (1) k k The state representative or Choi matrix of Φ is 1 X Φ(|βihβ|) = d |ejihek|Φ(|ejihek|) (2) jk where |βi is a maximally entangled Bell state. Choi [3] showed that the Ak can be obtained from the eigenvectors of Φ(|βihβ|) with non-zero eigenvalues. The operators Ak in (1) are known to be defined only up to a partial isometry and are often called Kraus operators. When a minimal set is obtained from Choi’s prescription using eigenvectors of (2), they are defined up to mixing of those from degenerate eigenvalues ∗Partially supported by the National Science Foundation under Grant DMS-0604900 1 and we will refer to them as Choi-Kraus operators. Choi showed that Φ is an extreme † point of the set of CPT maps Φ : Md1 7→ Md2 if and only if the set {AjAk} is linearly independent in Md1 . This implies that the Choi matrix of an extreme CPT map has rank at most d1.
    [Show full text]
  • Lecture 6: Quantum Error Correction and Quantum Capacity
    Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde∗ The quantum capacity theorem is one of the most important theorems in quantum Shannon theory. It is a fundamentally \quantum" theorem in that it demonstrates that a fundamentally quantum information quantity, the coherent information, is an achievable rate for quantum com- munication over a quantum channel. The fact that the coherent information does not have a strong analog in classical Shannon theory truly separates the quantum and classical theories of information. The no-cloning theorem provides the intuition behind quantum error correction. The goal of any quantum communication protocol is for Alice to establish quantum correlations with the receiver Bob. We know well now that every quantum channel has an isometric extension, so that we can think of another receiver, the environment Eve, who is at a second output port of a larger unitary evolution. Were Eve able to learn anything about the quantum information that Alice is attempting to transmit to Bob, then Bob could not be retrieving this information|otherwise, they would violate the no-cloning theorem. Thus, Alice should figure out some subspace of the channel input where she can place her quantum information such that only Bob has access to it, while Eve does not. That the dimensionality of this subspace is exponential in the coherent information is perhaps then unsurprising in light of the above no-cloning reasoning. The coherent information is an entropy difference H(B) − H(E)|a measure of the amount of quantum correlations that Alice can establish with Bob less the amount that Eve can gain.
    [Show full text]
  • An Ecological Perspective on the Future of Computer Trading
    An ecological perspective on the future of computer trading The Future of Computer Trading in Financial Markets - Foresight Driver Review – DR 6 An ecological perspective on the future of computer trading Contents 2. The role of computers in modern markets .................................................................................. 7 2.1 Computerization and trading ............................................................................................... 7 Execution................................................................................................................................7 Investment research ................................................................................................................ 7 Clearing and settlement ........................................................................................................... 7 2.2 A coarse preliminary taxonomy of computer trading .............................................................. 7 Execution algos....................................................................................................................... 8 Algorithmic trading................................................................................................................... 9 High Frequency Trading / Latency arbitrage............................................................................... 9 Algorithmic market making ....................................................................................................... 9 3. Ecology and evolution as key
    [Show full text]
  • Arxiv:1803.00026V4 [Cond-Mat.Str-El] 8 Feb 2019 3 Variational Quantum-Classical Simulation (VQCS) 5
    SciPost Physics Submission Efficient variational simulation of non-trivial quantum states Wen Wei Ho1*, Timothy H. Hsieh2,3, 1 Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 2 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA 3 Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada *[email protected] February 12, 2019 Abstract We provide an efficient and general route for preparing non-trivial quantum states that are not adiabatically connected to unentangled product states. Our approach is a hybrid quantum-classical variational protocol that incorporates a feedback loop between a quantum simulator and a classical computer, and is experimen- tally realizable on near-term quantum devices of synthetic quantum systems. We find explicit protocols which prepare with perfect fidelities (i) the Greenberger- Horne-Zeilinger (GHZ) state, (ii) a quantum critical state, and (iii) a topologically ordered state, with L variational parameters and physical runtimes T that scale linearly with the system size L. We furthermore conjecture and support numeri- cally that our protocol can prepare, with perfect fidelity and similar operational costs, the ground state of every point in the one dimensional transverse field Ising model phase diagram. Besides being practically useful, our results also illustrate the utility of such variational ans¨atzeas good descriptions of non-trivial states of matter. Contents 1 Introduction 2 2 Non-trivial quantum states
    [Show full text]
  • Capacity Estimates Via Comparison with TRO Channels
    Commun. Math. Phys. 364, 83–121 (2018) Communications in Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-018-3249-y Mathematical Physics Capacity Estimates via Comparison with TRO Channels Li Gao1 , Marius Junge1, Nicholas LaRacuente2 1 Department of Mathematics, University of Illinois, Urbana, IL 61801, USA. E-mail: [email protected]; [email protected] 2 Department of Physics, University of Illinois, Urbana, IL 61801, USA. E-mail: [email protected] Received: 1 November 2017 / Accepted: 27 July 2018 Published online: 8 September 2018 – © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract: A ternary ring of operators (TRO) in finite dimensions is an operator space as an orthogonal sum of rectangular matrices. TROs correspond to quantum channels that are diagonal sums of partial traces, we call TRO channels. TRO channels have simple, single-letter entropy expressions for quantum, private, and classical capacity. Using operator space and interpolation techniques, we perturbatively estimate capacities, capacity regions, and strong converse rates for a wider class of quantum channels by comparison to TRO channels. 1. Introduction Channel capacity, introduced by Shannon in his foundational paper [45], is the ultimate rate at which information can be reliably transmitted over a communication channel. During the last decades, Shannon’s theory on noisy channels has been adapted to the framework of quantum physics. A quantum channel has various capacities depending on different communication tasks, such as quantum capacity for transmitting qubits, and private capacity for transmitting classical bits with physically ensured security. The coding theorems, which characterize these capacities by entropic expressions, were major successes in quantum information theory (see e.g.
    [Show full text]
  • QIP 2010 Tutorial and Scientific Programmes
    QIP 2010 15th – 22nd January, Zürich, Switzerland Tutorial and Scientific Programmes asymptotically large number of channel uses. Such “regularized” formulas tell us Friday, 15th January very little. The purpose of this talk is to give an overview of what we know about 10:00 – 17:10 Jiannis Pachos (Univ. Leeds) this need for regularization, when and why it happens, and what it means. I will Why should anyone care about computing with anyons? focus on the quantum capacity of a quantum channel, which is the case we understand best. This is a short course in topological quantum computation. The topics to be covered include: 1. Introduction to anyons and topological models. 15:00 – 16:55 Daniel Nagaj (Slovak Academy of Sciences) 2. Quantum Double Models. These are stabilizer codes, that can be described Local Hamiltonians in quantum computation very much like quantum error correcting codes. They include the toric code This talk is about two Hamiltonian Complexity questions. First, how hard is it to and various extensions. compute the ground state properties of quantum systems with local Hamiltonians? 3. The Jones polynomials, their relation to anyons and their approximation by Second, which spin systems with time-independent (and perhaps, translationally- quantum algorithms. invariant) local interactions could be used for universal computation? 4. Overview of current state of topological quantum computation and open Aiming at a participant without previous understanding of complexity theory, we will discuss two locally-constrained quantum problems: k-local Hamiltonian and questions. quantum k-SAT. Learning the techniques of Kitaev and others along the way, our first goal is the understanding of QMA-completeness of these problems.
    [Show full text]
  • Arxiv:Quant-Ph/0110141V1 24 Oct 2001 Itr.Teuies a Aepromdn Oethan More Perf No Have Performed Can Have It Can Universe That the Operations History
    Computational capacity of the universe Seth Lloyd d’ArbeloffLaboratory for Information Systems and Technology MIT Department of Mechanical Engineering MIT 3-160, Cambridge, Mass. 02139 [email protected] Merely by existing, all physical systems register information. And by evolving dynamically in time, they transform and process that information. The laws of physics determine the amount of information that aphysicalsystem can register (number of bits) and the number of elementary logic operations that a system can perform (number of ops). The universe is a physical system. This paper quantifies the amount of information that the universe can register and the number of elementary operations that it can have performed over its history. The universe can have performed no more than 10120 ops on 1090 bits. ‘Information is physical’1.ThisstatementofLandauerhastwocomplementaryinter- pretations. First, information is registered and processedbyphysicalsystems.Second,all physical systems register and process information. The description of physical systems in arXiv:quant-ph/0110141v1 24 Oct 2001 terms of information and information processing is complementary to the conventional de- scription of physical system in terms of the laws of physics. Arecentpaperbytheauthor2 put bounds on the amount of information processing that can beperformedbyphysical systems. The first limit is on speed. The Margolus/Levitin theorem3 implies that the total number of elementary operations that a system can perform persecondislimitedbyits energy: #ops/sec 2E/π¯h,whereE is the system’s average energy above the ground ≤ state andh ¯ =1.0545 10−34 joule-sec is Planck’s reduced constant. As the presence × of Planck’s constant suggests, this speed limit is fundamentally quantum mechanical,2−4 and as shown in (2), is actually attained by quantum computers,5−27 including existing 1 devices.15,16,21,23−27 The second limit is on memory space.
    [Show full text]
  • Fault-Tolerant Quantum Computation: Theory and Practice
    FAULT-TOLERANT QUANTUM COMPUTATION: THEORY AND PRACTICE FAULT-TOLERANT QUANTUM COMPUTATION: THEORY AND PRACTICE Dissertation for the purpose of obtaining the degree of doctor at Delft University of Technology, by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen, Chair of the Board of Doctorates, to be defended publicly on Wednesday 15th, January 2020 at 12:30 o’clock by Christophe VUILLOT Master of Science in Computer Science, Université Paris Diderot, Paris, France, born in Clamart, France. This dissertation has been approved by the promotor. promotor: prof. dr. B. M. Terhal Composition of the doctoral committee: Rector Magnificus, chairperson Prof. dr. B. M. Terhal Technische Universiteit Delft, promotor Independent members: Prof. dr. C.W.J. Beenakker Universiteit Leiden Prof. dr. L. DiCarlo Technische Universiteit Delft Prof. dr. R.T. König Technische Universität München Dr. A. Leverrier Inria Paris Prof. dr. ir. L.M.K. Vandersypen Technische Universiteit Delft Prof. dr. R.M. de Wolf Centrum Wiskunde & Informatica Keywords: quantum computing, quantum error correction, fault-tolerance Printed by: Gildeprint - www.gildeprint.nl Front: Kandinsky Vassily (1866-1944), Auf Weiss II, 1923 Photo © Centre Pompidou, MNAM-CCI, Dist. RMN-Grand Palais / image Centre Pompidou, MNAM-CCI Copyright © 2019 by C. Vuillot ISBN 978-94-6384-097-2 An electronic version of this dissertation is available at http://repository.tudelft.nl/. This thesis is dedicated to my daughter Andréa and her mother Lisa. CONTENTS Summary xi Preface xiii 1 Introduction 1 1.1 Introduction to quantum computing . 2 1.1.1 Quantum mechanics. 2 1.1.2 Elementary quantum systems .
    [Show full text]