Machine Learning Quantum Error Correction Codes: Learning the Toric Code
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Simulating Quantum Field Theory with a Quantum Computer
Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers. -
Painstakingly-Edited Typeset Lecture Notes
Physics 239: Topology from Physics Winter 2021 Lecturer: McGreevy These lecture notes live here. Please email corrections and questions to mcgreevy at physics dot ucsd dot edu. Last updated: May 26, 2021, 14:36:17 1 Contents 0.1 Introductory remarks............................3 0.2 Conventions.................................8 0.3 Sources....................................9 1 The toric code and homology 10 1.1 Cell complexes and homology....................... 21 1.2 p-form ZN toric code............................ 23 1.3 Some examples............................... 26 1.4 Higgsing, change of coefficients, exact sequences............. 32 1.5 Independence of cellulation......................... 36 1.6 Gapped boundaries and relative homology................ 39 1.7 Duality.................................... 42 2 Supersymmetric quantum mechanics and cohomology, index theory, Morse theory 49 2.1 Supersymmetric quantum mechanics................... 49 2.2 Differential forms consolidation...................... 61 2.3 Supersymmetric QM and Morse theory.................. 66 2.4 Global information from local information................ 74 2.5 Homology and cohomology......................... 77 2.6 Cech cohomology.............................. 80 2.7 Local reconstructability of quantum states................ 86 3 Quantum Double Model and Homotopy 89 3.1 Notions of `same'.............................. 89 3.2 Homotopy equivalence and cohomology.................. 90 3.3 Homotopy equivalence and homology................... 91 3.4 Morse theory and homotopy -
Superconducting Quantum Simulator for Topological Order and the Toric Code
Superconducting Quantum Simulator for Topological Order and the Toric Code Mahdi Sameti,1 Anton Potoˇcnik,2 Dan E. Browne,3 Andreas Wallraff,2 and Michael J. Hartmann1 1Institute of Photonics and Quantum Sciences, Heriot-Watt University Edinburgh EH14 4AS, United Kingdom 2Department of Physics, ETH Z¨urich,CH-8093 Z¨urich,Switzerland 3Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom (Dated: March 20, 2017) Topological order is now being established as a central criterion for characterizing and classifying ground states of condensed matter systems and complements categorizations based on symmetries. Fractional quantum Hall systems and quantum spin liquids are receiving substantial interest because of their intriguing quantum correlations, their exotic excitations and prospects for protecting stored quantum information against errors. Here we show that the Hamiltonian of the central model of this class of systems, the Toric Code, can be directly implemented as an analog quantum simulator in lattices of superconducting circuits. The four-body interactions, which lie at its heart, are in our concept realized via Superconducting Quantum Interference Devices (SQUIDs) that are driven by a suitably oscillating flux bias. All physical qubits and coupling SQUIDs can be individually controlled with high precision. Topologically ordered states can be prepared via an adiabatic ramp of the stabilizer interactions. Strings of qubit operators, including the stabilizers and correlations along non-contractible loops, can be read out via a capacitive coupling to read-out resonators. Moreover, the available single qubit operations allow to create and propagate elementary excitations of the Toric Code and to verify their fractional statistics. -
Universal Control and Error Correction in Multi-Qubit Spin Registers in Diamond T
LETTERS PUBLISHED ONLINE: 2 FEBRUARY 2014 | DOI: 10.1038/NNANO.2014.2 Universal control and error correction in multi-qubit spin registers in diamond T. H. Taminiau 1,J.Cramer1,T.vanderSar1†,V.V.Dobrovitski2 and R. Hanson1* Quantum registers of nuclear spins coupled to electron spins of including one with an additional strongly coupled 13C spin (see individual solid-state defects are a promising platform for Supplementary Information). To demonstrate the generality of quantum information processing1–13. Pioneering experiments our approach to create multi-qubit registers, we realized the initia- selected defects with favourably located nuclear spins with par- lization, control and readout of three weakly coupled 13C spins for ticularly strong hyperfine couplings4–10. To progress towards each NV centre studied (see Supplementary Information). In the large-scale applications, larger and deterministically available following, we consider one of these NV centres in detail and use nuclear registers are highly desirable. Here, we realize univer- two of its weakly coupled 13C spins to form a three-qubit register sal control over multi-qubit spin registers by harnessing abun- for quantum error correction (Fig. 1a). dant weakly coupled nuclear spins. We use the electron spin of Our control method exploits the dependence of the nuclear spin a nitrogen–vacancy centre in diamond to selectively initialize, quantization axis on the electron spin state as a result of the aniso- control and read out carbon-13 spins in the surrounding spin tropic hyperfine interaction (see Methods for hyperfine par- bath and construct high-fidelity single- and two-qubit gates. ameters), so no radiofrequency driving of the nuclear spins is We exploit these new capabilities to implement a three-qubit required7,23–28. -
Unconditional Quantum Teleportation
R ESEARCH A RTICLES our experiment achieves Fexp 5 0.58 6 0.02 for the field emerging from Bob’s station, thus Unconditional Quantum demonstrating the nonclassical character of this experimental implementation. Teleportation To describe the infinite-dimensional states of optical fields, it is convenient to introduce a A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, pair (x, p) of continuous variables of the electric H. J. Kimble,* E. S. Polzik field, called the quadrature-phase amplitudes (QAs), that are analogous to the canonically Quantum teleportation of optical coherent states was demonstrated experi- conjugate variables of position and momentum mentally using squeezed-state entanglement. The quantum nature of the of a massive particle (15). In terms of this achieved teleportation was verified by the experimentally determined fidelity analogy, the entangled beams shared by Alice Fexp 5 0.58 6 0.02, which describes the match between input and output states. and Bob have nonlocal correlations similar to A fidelity greater than 0.5 is not possible for coherent states without the use those first described by Einstein et al.(16). The of entanglement. This is the first realization of unconditional quantum tele- requisite EPR state is efficiently generated via portation where every state entering the device is actually teleported. the nonlinear optical process of parametric down-conversion previously demonstrated in Quantum teleportation is the disembodied subsystems of infinite-dimensional systems (17). The resulting state corresponds to a transport of an unknown quantum state from where the above advantages can be put to use. squeezed two-mode optical field. -
Arxiv:1803.00026V4 [Cond-Mat.Str-El] 8 Feb 2019 3 Variational Quantum-Classical Simulation (VQCS) 5
SciPost Physics Submission Efficient variational simulation of non-trivial quantum states Wen Wei Ho1*, Timothy H. Hsieh2,3, 1 Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 2 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA 3 Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada *[email protected] February 12, 2019 Abstract We provide an efficient and general route for preparing non-trivial quantum states that are not adiabatically connected to unentangled product states. Our approach is a hybrid quantum-classical variational protocol that incorporates a feedback loop between a quantum simulator and a classical computer, and is experimen- tally realizable on near-term quantum devices of synthetic quantum systems. We find explicit protocols which prepare with perfect fidelities (i) the Greenberger- Horne-Zeilinger (GHZ) state, (ii) a quantum critical state, and (iii) a topologically ordered state, with L variational parameters and physical runtimes T that scale linearly with the system size L. We furthermore conjecture and support numeri- cally that our protocol can prepare, with perfect fidelity and similar operational costs, the ground state of every point in the one dimensional transverse field Ising model phase diagram. Besides being practically useful, our results also illustrate the utility of such variational ans¨atzeas good descriptions of non-trivial states of matter. Contents 1 Introduction 2 2 Non-trivial quantum states -
Quantum Error Modelling and Correction in Long Distance Teleportation Using Singlet States by Joe Aung
Quantum Error Modelling and Correction in Long Distance Teleportation using Singlet States by Joe Aung Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2002 @ Massachusetts Institute of Technology 2002. All rights reserved. Author ................... " Department of Electrical Engineering and Computer Science May 21, 2002 72-1 14 Certified by.................. .V. ..... ..'P . .. ........ Jeffrey H. Shapiro Ju us . tn Professor of Electrical Engineering Director, Research Laboratory for Electronics Thesis Supervisor Accepted by................I................... ................... Arthur C. Smith Chairman, Department Committee on Graduate Students BARKER MASSACHUSE1TS INSTITUTE OF TECHNOLOGY JUL 3 1 2002 LIBRARIES 2 Quantum Error Modelling and Correction in Long Distance Teleportation using Singlet States by Joe Aung Submitted to the Department of Electrical Engineering and Computer Science on May 21, 2002, in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science Abstract Under a multidisciplinary university research initiative (MURI) program, researchers at the Massachusetts Institute of Technology (MIT) and Northwestern University (NU) are devel- oping a long-distance, high-fidelity quantum teleportation system. This system uses a novel ultrabright source of entangled photon pairs and trapped-atom quantum memories. This thesis will investigate the potential teleportation errors involved in the MIT/NU system. A single-photon, Bell-diagonal error model is developed that allows us to restrict possible errors to just four distinct events. The effects of these errors on teleportation, as well as their probabilities of occurrence, are determined. -
QIP 2010 Tutorial and Scientific Programmes
QIP 2010 15th – 22nd January, Zürich, Switzerland Tutorial and Scientific Programmes asymptotically large number of channel uses. Such “regularized” formulas tell us Friday, 15th January very little. The purpose of this talk is to give an overview of what we know about 10:00 – 17:10 Jiannis Pachos (Univ. Leeds) this need for regularization, when and why it happens, and what it means. I will Why should anyone care about computing with anyons? focus on the quantum capacity of a quantum channel, which is the case we understand best. This is a short course in topological quantum computation. The topics to be covered include: 1. Introduction to anyons and topological models. 15:00 – 16:55 Daniel Nagaj (Slovak Academy of Sciences) 2. Quantum Double Models. These are stabilizer codes, that can be described Local Hamiltonians in quantum computation very much like quantum error correcting codes. They include the toric code This talk is about two Hamiltonian Complexity questions. First, how hard is it to and various extensions. compute the ground state properties of quantum systems with local Hamiltonians? 3. The Jones polynomials, their relation to anyons and their approximation by Second, which spin systems with time-independent (and perhaps, translationally- quantum algorithms. invariant) local interactions could be used for universal computation? 4. Overview of current state of topological quantum computation and open Aiming at a participant without previous understanding of complexity theory, we will discuss two locally-constrained quantum problems: k-local Hamiltonian and questions. quantum k-SAT. Learning the techniques of Kitaev and others along the way, our first goal is the understanding of QMA-completeness of these problems. -
Phd Proposal 2020: Quantum Error Correction with Superconducting Circuits
PhD Proposal 2020: Quantum error correction with superconducting circuits Keywords: quantum computing, quantum error correction, Josephson junctions, circuit quantum electrodynamics, high-impedance circuits • Laboratory name: Laboratoire de Physique de l'Ecole Normale Supérieure de Paris • PhD advisors : Philippe Campagne-Ibarcq ([email protected]) and Zaki Leghtas ([email protected]). • Web pages: http://cas.ensmp.fr/~leghtas/ https://philippecampagneib.wixsite.com/research • PhD location: ENS Paris, 24 rue Lhomond Paris 75005. • Funding: ERC starting grant. Quantum systems can occupy peculiar states, such as superpositions or entangled states. These states are intrinsically fragile and eventually get wiped out by inevitable interactions with the environment. Protecting quantum states against decoherence is a formidable and fundamental problem in physics, and it is pivotal for the future of quantum computing. Quantum error correction provides a potential solution, but its current envisioned implementations require daunting resources: a single bit of information is protected by encoding it across tens of thousands of physical qubits. Our team in Paris proposes to protect quantum information in an entirely new type of qubit with two key specicities. First, it will be encoded in a single superconducting circuit resonator whose innite dimensional Hilbert space can replace large registers of physical qubits. Second, this qubit will be rf-powered, continuously exchanging photons with a reservoir. This approach challenges the intuition that a qubit must be isolated from its environment. Instead, the reservoir acts as a feedback loop which continuously and autonomously corrects against errors. This correction takes place at the level of the quantum hardware, and reduces the need for error syndrome measurements which are resource intensive. -
Fault-Tolerant Quantum Computation: Theory and Practice
FAULT-TOLERANT QUANTUM COMPUTATION: THEORY AND PRACTICE FAULT-TOLERANT QUANTUM COMPUTATION: THEORY AND PRACTICE Dissertation for the purpose of obtaining the degree of doctor at Delft University of Technology, by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen, Chair of the Board of Doctorates, to be defended publicly on Wednesday 15th, January 2020 at 12:30 o’clock by Christophe VUILLOT Master of Science in Computer Science, Université Paris Diderot, Paris, France, born in Clamart, France. This dissertation has been approved by the promotor. promotor: prof. dr. B. M. Terhal Composition of the doctoral committee: Rector Magnificus, chairperson Prof. dr. B. M. Terhal Technische Universiteit Delft, promotor Independent members: Prof. dr. C.W.J. Beenakker Universiteit Leiden Prof. dr. L. DiCarlo Technische Universiteit Delft Prof. dr. R.T. König Technische Universität München Dr. A. Leverrier Inria Paris Prof. dr. ir. L.M.K. Vandersypen Technische Universiteit Delft Prof. dr. R.M. de Wolf Centrum Wiskunde & Informatica Keywords: quantum computing, quantum error correction, fault-tolerance Printed by: Gildeprint - www.gildeprint.nl Front: Kandinsky Vassily (1866-1944), Auf Weiss II, 1923 Photo © Centre Pompidou, MNAM-CCI, Dist. RMN-Grand Palais / image Centre Pompidou, MNAM-CCI Copyright © 2019 by C. Vuillot ISBN 978-94-6384-097-2 An electronic version of this dissertation is available at http://repository.tudelft.nl/. This thesis is dedicated to my daughter Andréa and her mother Lisa. CONTENTS Summary xi Preface xiii 1 Introduction 1 1.1 Introduction to quantum computing . 2 1.1.1 Quantum mechanics. 2 1.1.2 Elementary quantum systems . -
Performance of Various Low-Level Decoder for Surface Codes in the Presence of Measurement Error
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2021 Performance of Various Low-level Decoder for Surface Codes in the Presence of Measurement Error Claire E. Badger Follow this and additional works at: https://scholar.afit.edu/etd Part of the Computer Sciences Commons Recommended Citation Badger, Claire E., "Performance of Various Low-level Decoder for Surface Codes in the Presence of Measurement Error" (2021). Theses and Dissertations. 4885. https://scholar.afit.edu/etd/4885 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. Performance of Various Low-Level Decoders for Surface Codes in the Presence of Measurement Error THESIS Claire E Badger, B.S.C.S., 2d Lieutenant, USAF AFIT-ENG-MS-21-M-008 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-21-M-008 Performance of Various Low-Level Decoders for Surface Codes in the Presence of Measurement Error THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science Claire E Badger, B.S.C.S., B.S.E.E. -
Topology & Entanglement in Driven (Floquet) Many Body Quantum Systems
Topology & Entanglement in Driven (Floquet) Many Body Quantum Systems Ashvin Vishwanath Harvard University Adrian Po Lukasz Fidkowski Andrew Potter Harvard Seattle Texas Overview 1 ⌫ = log 2 ⌫ = log p log q 2 − Chiral phases in driven systems. The Driven Toric code. arXiv:1701.01440. Chiral Floquet arXiv:1701.01440. `Radical’ chiral phases. Po, Fidkowski, Morimoto, Potter, Floquet phases in a driven Kitaev AV. Phys. Rev. X 6, 041070 (2016) model. Po, Fidkowski, AV, Potter Overview 1 ⌫ = log 2 ⌫ = log p log q 2 − Chiral phases in driven systems. The Driven Toric code. arXiv:1701.01440. Chiral Floquet arXiv:1701.01440. `Radical’ chiral phases. Po, Fidkowski, Morimoto, Potter, Floquet phases in a driven Kitaev AV. Phys. Rev. X 6, 041070 (2016) model. Po, Fidkowski, AV, Potter Introduction: A gapped Hamiltonian J Volume = sites i i ⇠ · H ⌦ H energy H = Hr r X J = maxr Hr | r| excited states ∆ ground state low energy physics 4 Introduction: A gapped Hamiltonian J Volume = sites i i ⇠ · H ⌦ H energy H = Hr r X J = maxr Hr | r| excited states ∆ ground state low energy physics gapless 4 Introduction: A gapped Hamiltonian J Volume = sites i i ⇠ · H ⌦ H energy H = Hr r X J = maxr Hr | r| excited states ∆ ground state low energy physics gapless Need cooling (T=0) 4 Introduction: Entanglement Signatures Gapped Phases Gapless Phases Thermal Phases 1 S(⇢ ) ↵ @R log D + Area Law*log @R S Volume(R) R ⇠ | | − 2 ··· ⇠ Area Law R Volume Law Introduction: Entanglement Signatures Gapped Phases Gapless Phases Thermal Phases 1 S(⇢ ) ↵ @R log D + Area Law*log @R S Volume(R) R ⇠ | | − 2 ··· ⇠ Area Law R Volume Law Introduction: Classifying Gapped Quantum Phases Ground states of gapped local Hamiltonians How do we classify gapped ground states? No symmetry except t -> t+a Introduction: Classifying Gapped Quantum Phases Ground states of gapped local Hamiltonians How do we classify gapped ground states? No symmetry except t -> t+a Example 1:Quantum Hall Phases n=1$ h 1 Von$Klitzing+ n=2$ ⇢xy = e2 n n=3$ Bulk%Gapped% Edge%State% • Different integers - different phases.