Mouse Robo3 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Robo3 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Robo3 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Robo3 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Robo3 gene (NCBI Reference Sequence: NM_001164767 ; Ensembl: ENSMUSG00000032128 ) is located on Mouse chromosome 9. 28 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 28 (Transcript: ENSMUST00000115038). Exon 8~11 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Robo3 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-439O11 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygous mutants display perinatal lethality, abnormal commissural axon growth, and fragile floor plates. Exon 8 starts from about 27.56% of the coding region. The knockout of Exon 8~11 will result in frameshift of the gene. The size of intron 7 for 5'-loxP site insertion: 1647 bp, and the size of intron 11 for 3'-loxP site insertion: 541 bp. The size of effective cKO region: ~1989 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 6 7 8 9 10 11 12 13 14 15 28 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Robo3 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(8489bp) | A(25.63% 2176) | C(22.83% 1938) | T(25.32% 2149) | G(26.22% 2226) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. Significant high GC-content regions are found. It may be difficult to construct this targeting vector. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr9 - 37425629 37428628 3000 browser details YourSeq 217 2521 2942 3000 90.3% chr16 + 33387833 33388229 397 browser details YourSeq 201 2533 2942 3000 93.9% chr9 + 75450599 75451101 503 browser details YourSeq 199 2534 2837 3000 94.1% chr14 - 47591110 47591412 303 browser details YourSeq 192 2586 2942 3000 89.5% chr11 - 96845984 96846431 448 browser details YourSeq 186 2532 2929 3000 89.5% chr9 + 95538228 95538590 363 browser details YourSeq 186 2512 2723 3000 94.8% chr1 + 156676911 156677124 214 browser details YourSeq 184 2540 2941 3000 89.6% chr12 - 110378871 110379258 388 browser details YourSeq 181 2534 2788 3000 96.5% chr5 + 120216001 120216255 255 browser details YourSeq 181 2519 2723 3000 96.0% chr4 + 141137866 141138196 331 browser details YourSeq 180 2525 2942 3000 87.9% chr9 - 106486607 106486918 312 browser details YourSeq 178 2520 2723 3000 95.9% chr8 - 68058162 68058366 205 browser details YourSeq 178 2512 2723 3000 91.1% chr15 - 79274938 79275144 207 browser details YourSeq 178 2520 2725 3000 92.4% chr15 - 75952218 75952417 200 browser details YourSeq 178 2533 2724 3000 96.9% chr10 - 5113726 5113919 194 browser details YourSeq 178 2533 2722 3000 96.9% chr2 + 32867030 32867219 190 browser details YourSeq 178 2536 2871 3000 89.5% chr11 + 58089511 58089835 325 browser details YourSeq 176 2525 2722 3000 92.9% chr5 - 110631073 110631267 195 browser details YourSeq 176 2534 2737 3000 96.4% chr11 + 96092434 96092652 219 browser details YourSeq 176 2520 2742 3000 89.7% chr11 + 4710373 4710571 199 Note: The 3000 bp section upstream of Exon 8 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr9 - 37420640 37423639 3000 browser details YourSeq 65 2317 2421 3000 90.2% chr11 + 118291671 118291778 108 browser details YourSeq 64 2299 2421 3000 93.3% chr17 + 70018582 70018708 127 browser details YourSeq 57 2346 2411 3000 94.0% chr1 - 75536721 75536788 68 browser details YourSeq 57 2318 2415 3000 85.8% chr4 + 106874471 106874566 96 browser details YourSeq 56 2299 2392 3000 83.4% chr12 - 25279575 25279670 96 browser details YourSeq 56 2312 2412 3000 79.8% chr10 - 17611706 17611810 105 browser details YourSeq 55 2317 2419 3000 92.4% chr8 + 70052094 70052202 109 browser details YourSeq 55 2340 2421 3000 87.7% chr14 + 31881431 31881515 85 browser details YourSeq 53 2299 2377 3000 88.5% chr10 - 88889539 88889631 93 browser details YourSeq 53 2316 2415 3000 85.6% chr8 + 13701868 13701972 105 browser details YourSeq 53 2307 2410 3000 88.6% chr18 + 60685467 60685946 480 browser details YourSeq 53 2299 2377 3000 88.5% chr16 + 38848683 38848763 81 browser details YourSeq 52 2299 2415 3000 89.4% chr2 - 67610859 67610978 120 browser details YourSeq 52 2299 2377 3000 89.4% chr12 + 102882727 102882807 81 browser details YourSeq 51 2317 2409 3000 87.0% chr17 - 26711944 26712042 99 browser details YourSeq 49 2314 2385 3000 93.2% chr16 - 64897510 64897588 79 browser details YourSeq 49 2299 2365 3000 93.0% chr15 - 65841521 65841588 68 browser details YourSeq 49 2299 2415 3000 93.2% chr18 + 66592608 66592726 119 browser details YourSeq 48 2311 2377 3000 91.4% chr1 - 94610845 94610913 69 Note: The 3000 bp section downstream of Exon 11 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Robo3 roundabout guidance receptor 3 [ Mus musculus (house mouse) ] Gene ID: 19649, updated on 15-Oct-2019 Gene summary Official Symbol Robo3 provided by MGI Official Full Name roundabout guidance receptor 3 provided by MGI Primary source MGI:MGI:1343102 See related Ensembl:ENSMUSG00000032128 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Rig1; Rbig1; Rig-1; Robo3a; Robo3b Expression Biased expression in CNS E11.5 (RPKM 18.7), cortex adult (RPKM 8.7) and 5 other tissues See more Orthologs human all Genomic context Location: 9; 9 A4 See Robo3 in Genome Data Viewer Exon count: 30 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 9 NC_000075.6 (37416045..37433436, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 9 NC_000075.5 (37223630..37240760, complement) Chromosome 9 - NC_000075.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 6 transcripts Gene: Robo3 ENSMUSG00000032128 Description roundabout guidance receptor 3 [Source:MGI Symbol;Acc:MGI:1343102] Gene Synonyms Rbig1, Rig-1, Rig1, Robo3a, Robo3b Location Chromosome 9: 37,415,669-37,433,246 reverse strand. GRCm38:CM001002.2 About this gene This gene has 6 transcripts (splice variants), 297 orthologues, 35 paralogues, is a member of 1 Ensembl protein family and is associated with 10 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Robo3- ENSMUST00000115038.2 4797 1402aa ENSMUSP00000110690.1 Protein coding CCDS52770 D3Z4M6 TSL:5 202 GENCODE basic APPRIS P2 Robo3- ENSMUST00000034643.11 4712 1380aa ENSMUSP00000034643.5 Protein coding - E9QPQ1 TSL:5 201 GENCODE basic APPRIS ALT2 Robo3- ENSMUST00000170512.7 5000 1345aa ENSMUSP00000150639.1 Nonsense mediated - A0A1L1SU85 TSL:1 205 decay Robo3- ENSMUST00000171467.7 3222 No - Retained intron - - TSL:1 206 protein Robo3- ENSMUST00000167089.7 2226 No - Retained intron - - TSL:2 203 protein Robo3- ENSMUST00000167216.1 668 No - Retained intron - - TSL:5 204 protein Page 6 of 8 https://www.alphaknockout.com 37.58 kb Forward strand 37.41Mb 37.42Mb 37.43Mb 37.44Mb Genes Robo4-205 >protein coding (Comprehensive set... Robo4-204 >nonsense mediated decay Robo4-203 >protein coding Robo4-202 >protein coding Robo4-201 >protein coding Robo4-206 >retained intron Contigs AC138284.9 > AC105958.11 > Genes (Comprehensive set... < Robo3-203retained intron < Robo3-202protein coding < Robo3-201protein coding < Robo3-206retained intron < Robo3-205nonsense mediated decay < Robo3-204retained intron Regulatory Build 37.41Mb 37.42Mb 37.43Mb 37.44Mb Reverse strand 37.58 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Flank Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding processed transcript Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000115038 < Robo3-202protein coding Reverse strand 17.20 kb ENSMUSP00000110... MobiDB lite Low complexity (Seg) Superfamily Immunoglobulin-like domain superfamily Fibronectin type III superfamily SMART Immunoglobulin subtype Fibronectin type III Immunoglobulin subtype 2 Pfam PF13927 Fibronectin type III Immunoglobulin I-set PROSITE profiles Immunoglobulin-like domain Fibronectin type III PANTHER Roundabout homologue 3 PTHR12231 Gene3D Immunoglobulin-like fold CDD cd05726 cd00096 Fibronectin type III All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant splice region variant synonymous variant Scale bar 0 200 400 600 800 1000 1200 1402 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • Screening of a Clinically and Biochemically Diagnosed SOD Patient Using Exome Sequencing: a Case Report with a Mutations/Variations Analysis Approach
    The Egyptian Journal of Medical Human Genetics (2016) 17, 131–136 HOSTED BY Ain Shams University The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com CASE REPORT Screening of a clinically and biochemically diagnosed SOD patient using exome sequencing: A case report with a mutations/variations analysis approach Mohamad-Reza Aghanoori a,b,1, Ghazaleh Mohammadzadeh Shahriary c,2, Mahdi Safarpour d,3, Ahmad Ebrahimi d,* a Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran b Research and Development Division, RoyaBioGene Co., Tehran, Iran c Department of Genetics, Shahid Chamran University of Ahvaz, Ahvaz, Iran d Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran Received 12 May 2015; accepted 15 June 2015 Available online 22 July 2015 KEYWORDS Abstract Background: Sulfite oxidase deficiency (SOD) is a rare neurometabolic inherited disor- Sulfite oxidase deficiency; der causing severe delay in developmental stages and premature death. The disease follows an auto- Case report; somal recessive pattern of inheritance and causes deficiency in the activity of sulfite oxidase, an Exome sequencing enzyme that normally catalyzes conversion of sulfite to sulfate. Aim of the study: SOD is an underdiagnosed disorder and its diagnosis can be difficult in young infants as early clinical features and neuroimaging changes may imitate some common diseases. Since the prognosis of the disease is poor, using exome sequencing as a powerful and efficient strat- egy for identifying the genes underlying rare mendelian disorders can provide important knowledge about early diagnosis, disease mechanisms, biological pathways, and potential therapeutic targets.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Human Robo3 Blocking Peptide (CDBP2568) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Human Robo3 blocking peptide (CDBP2568) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Blocking/Immunizing peptide for anti-ROBO3/RIG1 (internal) antibody Antigen Description This gene is a member of the Roundabout (ROBO) gene family that controls neurite outgrowth, growth cone guidance, and axon fasciculation. ROBO proteins are a subfamily of the immunoglobulin transmembrane receptor superfamily. SLIT proteins 1-3, a family of secreted chemorepellants, are ligands for ROBO proteins and SLIT/ROBO interactions regulate myogenesis, leukocyte migration, kidney morphogenesis, angiogenesis, and vasculogenesis in addition to neurogenesis. This gene, ROBO3, has a putative extracellular domain with five immunoglobulin (Ig)-like loops and three fibronectin (Fn) type III motifs, a transmembrane segment, and a cytoplasmic tail with three conserved signaling motifs: CC0, CC2, and CC3 (CC for conserved cytoplasmic). Unlike other ROBO family members, ROBO3 lacks motif CC1. The ROBO3 gene regulates axonal navigation at the ventral midline of the neural tube. In mouse, loss of Robo3 results in a complete failure of commissural axons to cross the midline throughout the spinal cord and the hindbrain. Mutations ROBO3 result in horizontal gaze palsy with progressive scoliosis (HGPPS); an autosomal recessive disorder characterized by congenital absence of horizontal gaze, progressive scoliosis, and failure of the corticospinal and somatosensory axon tracts to cross the midline in the medulla.
    [Show full text]
  • Mathematical Model of Auxin Metabolism in Shoots Of
    RUSSIAN ACADEMY OF SCIENCES SIBERIAN BRANCH INSTITUTE OF CYTOLOGY AND GENETICS THE SIXTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE Abstracts BGRS’2008 Novosibirsk, Russia June 22—28, 2008 Novosibirsk 2008 1 INTERNATIONAL PROGRAM COMMITTEE* Nikolay Kolchanov Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia (Chairman of the Conference) Ralf Hofestadt University of Bielefeld, Germany (Co-Chairman of the Conference) Dagmara Furman Institute of Cytology and Genetics SB RAS, Novosibirsk, (Conference Scientific Secretary) Dmitry Afonnikov Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Shandar Ahmad National Institute of Biomedical Innovation, Japan Philip Bourne University of California San Diego, San-Diego, USA Samir Brahmachari Institute of Genomics and Integrative Biology, Delhi, India Ming Chen Department of Bioinformatics Zhejiang University, Hangzhou, China А. Fazel Famili University of Ottawa, IIT/ITI - National Research Council Canada, Ottawa, Canada Mikhail Gelfand Institute for Information Transmission Problems RAS, Russia Boris M. Glinsky Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia Nikolay Goncharov Institute of Cytology and Genetics, Novosibirsk, Russia Charlie Hodgman Multidisciplinary Centre for Integrative Biology, School of Biosciences, University of Nottingham, UK Alexis Ivanov Institute of Biomedical Chemistry RAMS, Moscow, Russia Manfred Kayser Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
    [Show full text]
  • Screening of a Clinically and Biochemically Diagnosed SOD Patient Using Exome Sequencing: a Case Report with a Mutations/Variations Analysis Approach
    The Egyptian Journal of Medical Human Genetics (2016) 17, 131–136 HOSTED BY Ain Shams University The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com CASE REPORT Screening of a clinically and biochemically diagnosed SOD patient using exome sequencing: A case report with a mutations/variations analysis approach Mohamad-Reza Aghanoori a,b,1, Ghazaleh Mohammadzadeh Shahriary c,2, Mahdi Safarpour d,3, Ahmad Ebrahimi d,* a Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran b Research and Development Division, RoyaBioGene Co., Tehran, Iran c Department of Genetics, Shahid Chamran University of Ahvaz, Ahvaz, Iran d Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran Received 12 May 2015; accepted 15 June 2015 Available online 22 July 2015 KEYWORDS Abstract Background: Sulfite oxidase deficiency (SOD) is a rare neurometabolic inherited disor- Sulfite oxidase deficiency; der causing severe delay in developmental stages and premature death. The disease follows an auto- Case report; somal recessive pattern of inheritance and causes deficiency in the activity of sulfite oxidase, an Exome sequencing enzyme that normally catalyzes conversion of sulfite to sulfate. Aim of the study: SOD is an underdiagnosed disorder and its diagnosis can be difficult in young infants as early clinical features and neuroimaging changes may imitate some common diseases. Since the prognosis of the disease is poor, using exome sequencing as a powerful and efficient strat- egy for identifying the genes underlying rare mendelian disorders can provide important knowledge about early diagnosis, disease mechanisms, biological pathways, and potential therapeutic targets.
    [Show full text]
  • Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands That Promote Axonal Growth
    Research Article: New Research Development Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth Jeremy S. Toma,1 Konstantina Karamboulas,1,ª Matthew J. Carr,1,2,ª Adelaida Kolaj,1,3 Scott A. Yuzwa,1 Neemat Mahmud,1,3 Mekayla A. Storer,1 David R. Kaplan,1,2,4 and Freda D. Miller1,2,3,4 https://doi.org/10.1523/ENEURO.0066-20.2020 1Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada, 2Institute of Medical Sciences University of Toronto, Toronto, Ontario M5G 1A8, Canada, 3Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada, and 4Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada Abstract Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are es- sential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, in- cluding known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesen- chymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons.
    [Show full text]
  • Characterization of a Novel Lbx1 Mouse Loss of Function Strain
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.25.457618; this version posted August 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 Characterization of a novel Lbx1 mouse loss of function strain 4 5 6 Lyvianne Decourtye, Jeremy A. McCallum-Loudeac, Sylvia Zellhuber-McMillan, Emma Young, 7 Kathleen J. Sircombe, Megan J. Wilson* 8 9 10 11 Department of Anatomy, Otago School of Medical Sciences, University of Otago, 9054 12 Dunedin, New Zealand 13 14 15 16 *Corresponding author: 17 Email: [email protected] Phone: +64 347 046 95 18 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.25.457618; this version posted August 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract 2 Adolescent Idiopathic Scoliosis (AIS) is the most common type of spine deformity affecting 2- 3 3% of the population worldwide. The etiology of this disease is still poorly understood. Several 4 GWAS studies have identified single nucleotide polymorphisms (SNPs) located near the gene 5 LBX1 that is significantly correlated with AIS risk. LBX1 is a transcription factor with roles in 6 myocyte precursor migration, cardiac neural crest specification, and neuronal fate 7 determination in the neural tube. Here, we further investigated the role of LBX1 in the 8 developing spinal cord of mouse embryos using a CRISPR-generated mouse model expressing 9 a truncated version of LBX1 (Lbx1Δ).
    [Show full text]
  • Reconstruction of Circrna-Mirna-Mrna Associated
    www.nature.com/scientificreports OPEN Reconstruction of circRNA‑miRNA‑mRNA associated ceRNA networks reveal functional circRNAs in intracerebral hemorrhage Zhen Liu, Xinran Wu, Zihan Yu & Xiaobo Tang* Circular RNA (circRNA), a novel class of noncoding RNAs, has been used extensively to complement transcriptome remodeling in the central nervous system, although the genomic coverage provided has rarely been studied in intracerebral hemorrhage (ICH) and is limited and fails to provide a detailed picture of the cerebral transcriptome landscape. Here, we described sequencing‑based transcriptome profling, providing comprehensive analysis of cerebral circRNA, messenger RNA (mRNA) and microRNA (miRNA) expression in ICH rats. In the study, male Sprague–Dawley rats were subjected to ICH, and next‑generation sequencing of RNAs isolated from non‑hemorrhagic (Sham) and hemorrhagic (ICH) rat brain samples collected 7 (early phase) and 28 (chronic phase) days after insults, was conducted. Bioinformatics analysis was performed to determine miRNA binding sites and gene ontology of circRNAs, target genes of miRNAs, as well as biological functions of mRNAs, altered after ICH. These analyses revealed diferent expression profles of circRNAs, mRNAs and miRNAs in day‑7 and day‑28 ICH groups, respectively, compared with the Sham. In addition, the expression signature of circRNAs was more sensitive to disease progression than that of mRNAs or miRNAs. Further analysis suggested two temporally specifc circRNA‑miRNA‑mRNA networks based on the competitive endogenous RNA theory, which had profound impacts on brain activities after ICH. In summary, these results suggested an important role for circRNAs in the pathogenesis of ICH and in reverse remodeling based on self‑protection support, providing deep insights into diverse possibilities for ICH therapy through targeting circRNAs.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]
  • Array-Based Profiling of the Differential Methylation Status of Cpg Islands in Hepatocellular Carcinoma Cell Lines
    ONCOLOGY LETTERS 1: 815-820, 2010 Array-based profiling of the differential methylation status of CpG islands in hepatocellular carcinoma cell lines BIN-BIN LIU, DAN ZHENG, YIN-KUN LIU, XIAO-NAN KANG, LU SUN, KUN GUO, RUI-XIA SUN, JIE CHEN and YAN ZHAO Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China Received February 8, 2010; Accepted June 26, 2010 DOI: 10.3892/ol_00000143 Abstract. Alterations in the DNA methylation status particularly genes was linked to the pathogenesis of various types of in CpG islands are involved in the initiation and progression of cancer, and tumor-specific methylation changes were estab- many types of human cancer. A number of DNA methylation lished as prognostic markers in numerous tumor entities (3). alterations have been reported in hepatocellular carcinoma Unlike genetic modifications, such as mutations or genomic (HCC). However, a systematic analysis is required to elucidate imbalances, epigenetic changes are potentially reversible, the relationship between differential DNA methylation status making these changes particularly important therapeutic targets and the characteristics and progression of HCC. In the present in cancer and other diseases (4). study, a global analysis of DNA methylation using a human In recent years, different techniques have been developed CpG-island 12K array was performed on a number of HCC for the genome-wide screening of CGI methylation status. cell lines of different origin and metastatic potential. Based on Included is differential methylation hybridization (DMH) a standard methylation alteration ratio of ≥2 or ≤0.5, 58 CpG which is a high-throughput DNA methylation screening tool island sites and 66 tumor-related genes upstream, downstream that utilizes methylation-sensitive restriction enzymes to or within were identified.
    [Show full text]
  • Iron Homeostasis in Neuron-Glia Interaction
    Iron Homeostasis in Neuron-Glia Interaction Dissertation for the award of the degree Doctor rerum naturalium of the Georg-August University Göttingen within the program Genes and Development of the Georg-August University School of Science (GAUSS) submitted by Tina Kling born in Pforzheim, Germany Göttingen, 2016 Members of the Thesis Committee: Supervisor Prof. Dr. Mikael Simons Max Planck Institute for Experimental Medicine, Göttingen Department of Molecular Neurobiology, Technical University of Munich Second member of the thesis committee Prof. Dr. Christian Klämbt Institut für Neurobiologie, Westfälische Wilhelms Universität, Münster Third member of the thesis committee: Prof. Dr. Jörg Großhans Institut für Entwicklungsbiochemie, Universiätsmedizin, Göttingen Extended Thesis Committee: Prof. Dr. Gregor Bucher, Georg-August University Göttingen Prof. Dr. Ralf Heinrich, Georg-August University Göttingen PD Dr. Hauke Werner, Max Planck Institute for Experimental Medicine, Göttingen Date of Disputation: 19.09.2016 Affidavit I hereby declare that this PhD thesis “Iron Homeostasis in Neuron-Glia Interaction” has been written independently with no other aids or sources than quoted. Tina Kling July 2016 Göttingen, Germany All religions, arts and sciences are branches of the same tree. All these aspirations are directed toward ennobling man's life, lifting it from the sphere of mere physical existence and leading the individual towards freedom. Albert Einstein'Moral Decay', Out of My Later Years (1937, 1995) i Contents Contents .........................................................................................................................................
    [Show full text]
  • The Functional and Structural Analysis of Drosophila Robo2 in Axon Guidance
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2019 The Functional and Structural Analysis of Drosophila robo2 in Axon Guidance LaFreda Janae Howard University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Cell Biology Commons, Computational Biology Commons, Genetics Commons, and the Molecular and Cellular Neuroscience Commons Recommended Citation Howard, LaFreda Janae, "The Functional and Structural Analysis of Drosophila robo2 in Axon Guidance" (2019). Theses and Dissertations. 3379. https://scholarworks.uark.edu/etd/3379 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. The Functional and Structural Analysis of Drosophila robo2 in Axon Guidance A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology by LaFreda Janae Howard Fort Valley State University Bachelor of Science in Biology, 2014 August 2019 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Timothy A. Evans, Ph.D. Dissertation Advisor Jeffrey Lewis, Ph.D. Ines Pinto, Ph.D. Committee Member Committee Member Michael Lehmann, Ph.D. Paul Adams, Ph.D. Committee Member Committee Member ABSTRACT In animals with complex nervous systems such as mammals and insects, signaling pathways are responsible for guiding axons to their appropriate synaptic targets. Importantly, when this process is not successful during the development of an organism, outcomes include catastrophes such as human neurological diseases and disorders.
    [Show full text]