Proceedings of the Symposium on Research and Management of Annosus Root Disease (Heterobasidion Annosum) in Western North America

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the Symposium on Research and Management of Annosus Root Disease (Heterobasidion Annosum) in Western North America United States Department of Agriculture Proceedings of the Symposium Forest Service Pacific Southwest on Research and Management Forest and Range Experiment Station of Annosus Root Disease General Technical Report PSW-116 (Heterobasidion annosum) in Western North America April 18-21, 1989, Monterey, California Otrosina, William J. ; Scharpf, Robert F., technical coordinators. 1989. Proceedings of the symposium on research and management of annosus root disease (Heterobasidion annosum) in western North. America; April 18-21, 1989; Monterey, CA. Gen. Tech. Rep. PSW 116. Berkeley, CA: Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture; 177 p. The proceedings is a collection of papers presented at the Symposium on Research and Management of Annosus Root Disease (Heterobasidion annosum) in Western North America held in Monterey, California, April 18-21, 1989. As the first symposium dealing with this subject in the western United States, the papers presented address current research and management issues relating to the topics of biology, ecology, epidemiol- ogy, and genetics of Heterobasidion annosum; symptomatology, diagno- sis, disease loss, and impacts; factors affecting loss and impact; and man- agement strategies relating to survey, detection, and control, including case studies. Retrieval Terms: Heterobasidion annosum, annosus root disease, root disease biology, root disease management, symptomatology, root disease impact, root disease losses. Authors assumed full responsibility for the submission of camera-ready manuscripts. Views expressed in each paper are those of the authors and not necessarily those of the sponsoring organizations. Trade names and commercial enterprises mentioned are solely for information and do not imply endorsement of the sponsoring organizations. Publisher: Pacific Southwest Forest and Range Experiment Station P.O. Box 245, Berkeley, California 94701 September 1989 Proceedings of the Symposium on Research and Management of Annosus Root Disease (Heterobasidion annosum) in Western North America April 18-21, 1989, Monterey, California William J. Otrosina and Robert F. Scharpf, Technical Coordinators CONTENTS Foreword .................................................................................................................................... iv Acknowledgments ....................................................................................................................... v History ........................................................................................................................................ 1 Annosus Root Disease in Europe and the Southeastern United States: Occurrence, Research, and Historical Perspective ................................................................................. 3 William J. Stambaugh History of Heterobasidion annosum in Western United States ....................................... 10 Richard S. Smith, Jr. Biology, Ecology and Genetics of Heterobasidion annosum ................................................. 17 Genetics and Population Structure of Heterobasidion annosum with Special Reference to Western North America ............................................................................................... 19 Thomas E. Chase Biology, Ecology, and Epidemiology of Heterobasidion annosum ................................. 26 William J. Otrosina and Fields W. Cobb, Jr. Symptoms and Diagnosis .........................................................................................................35 Symptoms and Diagnosis of Annosus Root Disease in the Intermountain Western United States ..................................................................................................... 37 James W. Byler Diagnosis of Annosus Root Disease in Mixed Conifer Forests in the Northwestern United States ................................................................................................................... 40 Craig L. Schmitt Characteristics of Annosus Root Disease in the Pacific Southwest ................................. 43 Gregg A. DeNitto Losses and Impact by Region ................................................................................................... 49 Distribution and Impacts of Annosus Root Disease in Forests of the Northern Rocky Mountains ............................................................................................................ 51 Ralph E. Williams i Heterobasidion (Fornes) Annosum Incidence in Pre-Commercially Thinned Coastal Washington Western Hemlock Stands ............................................................................57 Willis R. Littke and John E. Browning Losses Caused by Annosus Root Disease in Pacific Northwest Forests ......................... 66 Ellen Michaels Goheen and Donald J. Goheen Annosus Root Disease in True Firs in Northern and Central California National Forests ............................................................................................................... 70 G. W. Slaughter and J. R. Parmeter, Jr. The Incidence and Impact of Heterobasidion annosum on Pine and Incense-Cedar in California Forests ........................................................................................................ 78 Melissa Marosy and John R. Parmeter, Jr. Factors Affecting Loss and Impact .......................................................................................83 Impact of Precommercial Thinning on Development of Heterobasidion annosum in Western Hemlock ............................................................................................................ 85 Robert L. Edmonds, David C. Shaw, Tom Hsiang, and Charles H. Driver Factors Affecting Infection of Precommercial Thinning Stumps by Heterobasidion annosum in Coastal British Columbia ............................................................................. 95 D. J. Morrison Is Heterobasidion annosum Poorly Adapted to Incite Disease in Cool, Wet Environments? .......................................................................................................101 Charles G. Shaw, III Interactions of Root Disease and Bark Beetles ..............................................................105 George T. Ferrell and J. Richard Parmeter, Jr. Management Strategies―Survey, Detection, and Control .............................................. 109 Annosus Root Disease Hazard Rating, Detection, and Management Strategies in the Southeastern United States ...................................................................................... 111 S. A. Alexander The Lack of a Long-Term Growth Effect of Annosus Control in Southeastern United States ................................................................................................................. 117 F. H. Tainter, J. G. Williams, N. J. Hess, S. W. Oak, and D. A. Starkey A Model for Estimating Current and Future Timber Volume Loss from Stem Decay Caused by Heterobasidion annosum and Other Fungi in Stands of True Fir......123 Gregory M. Filip Simulation of Impacts of Annosus Root Disease with the Western Root Disease Model ............................................................................................................................ 129 Charles G. Shaw III, Donald J. Goheen, and Bov B. Eav Management Strategies―Case Studies ........................................................................... 141 Forest-Site Planning and Prescription for Control of Annosus Root Disease in Ponderosa Pine and Mixed Conifer Stands ................................................................... 143 John Nesbitt Prescribing Control in Mixed Conifer Stands Affected by Annosus Root Disease ....... 146 Gary Petersen Management of Westside Washington Conifer Stands Infected with Heterobasidion annosum ............................................................................................... 150 Elvira Young ii Management Strategies for Annosus Root Disease in Pacific Northwest Coastal Western Hemlock .......................................................................................................... 153 Kenelm W. Russell Borax Stump Treatment for Control of Annosus Root Disease in the Eastside Pine Type Forests of Northeastern California ....................................................................... 159 John T. Kliejunas Management of Annosus Root Disease Caused by Heterobasidion annosum in Coniferous Trees in Yosemite National Park ................................................................ 167 Lorne West Summary ................................................................................................................................. 171 A Summary of Information Needs for the Management of Heterobasidion annosum in Coniferous Forests in Western United States ........................................................... 173 William J. Otrosina and Kenelm W. Russell Poster Paper ........................................................................................................................... 175 Annosus Root Disease in Noble Fir Christmas Trees .................................................... 177 Alan Kanaskie, Gene Milbrath, and Kai Sjoblom iii FOREWORD Root diseases caused by fungi are considered the importance of this disease in our western for- by the Forest Service to be among the most damag- ests, and scientists and pest managers have accu- ing diseases of conifers in western North America. mulated a substantial body of knowledge
Recommended publications
  • Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
    fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating.
    [Show full text]
  • Article Extensive Trans-Specific Polymorphism at the Mating Type
    Extensive Trans-Specific Polymorphism at the Mating Type Locus of the Root Decay Fungus Heterobasidion Linda T.A. van Diepen,y,z,1 A˚ke Olson,y,2 Katarina Ihrmark,2 Jan Stenlid,*,2 and Timothy Y. James*,1 1Department of Ecology and Evolutionary Biology, University of Michigan 2Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden zPresent address: Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH yThese authors contributed equally to this work. *Corresponding author: E-mail: [email protected]; [email protected]. Associate editor: Naoki Takebayashi The sequence data reported in this article have been submitted in the GenBank (accession nos. KF280347–KF280390). The coding DNA sequence alignments used for this study have been deposited in the Dryad Repository under http://dx.doi.org/10.5061/dryad. r7nt4. Abstract Downloaded from Incompatibility systems in which individuals bearing identical alleles reject each other favor the maintenance of a diversity of alleles. Mushroom mating type loci (MAT) encode for dozens or hundreds of incompatibility alleles whose loss from the population is greatly restricted through negative frequency selection, leading to a system of alleles with highly divergent sequences. Here, we use DNA sequences of homeodomain (HD) encoding genes at the locus of five MAT http://mbe.oxfordjournals.org/ closely related species of the root rot basidiomycete Heterobasidion annosum sensu lato to show that the extended coalescence time of MAT alleles greatly predates speciation in the group, contrasting loci outside of MAT that show allele divergences largely consistent with the species phylogeny with those of MAT, which show rampant trans-species poly- morphism.
    [Show full text]
  • Infection and Growth of Heterobasidion Spp. in Picea Abies
    INFECTION AND GROWTH OF HETEROBASIDION SPP. IN PICEA ABIES CONTROL BY PHLEBIOPSIS GIGANTEA STUMP TREATMENT Mattias Berglund Faculty of Forest Science Southern Swedish Forest Research Centre Alnarp Doctoral thesis Swedish University of Agricultural Sciences Alnarp 2005 Acta Universitatis Agriculturae Sueciae 2005: 36 ISSN 1652-6880 ISBN 91-576-7035-8 © 2005 Mattias Berglund, Alnarp Tryck: SLU Service/Repro, Alnarp 2005 Abstract Berglund, M. 2005. Infection and growth of Heterobasidion spp. in Picea abies – Control by Phlebiopsis gigantea stump treatment. Doctor’s dissertation. ISSN 1652-6880, ISBN 91-576-7035-8. In economical terms, species of Heterobasidion are among the most severe fungal pests in coniferous forests of the northern hemisphere. The fungi cause interior decay in the stem of trees and trees may also die as a cause of infection. Two species of Heterobasidion have been identified in Sweden, Heterobasidion annosum s.s. (Fr.) Bref. and Heterobasidion parviporum Niemelä & Korhonen. The former has been identified from southern to central Sweden whereas the latter is present throughout the whole country. Stump treatment, using chemical or biological treatment agents, is the most widely used silvicultural method to prevent infection by Heterobasidion. This thesis mainly focuses on different aspects of biological stump treatment using Phlebiopsis gigantea (Fr.) Jül. The effectiveness of stump treatment against air-borne Heterobasidion spores with P. gigantea, when applied at different rates of stump coverage was investigated in southern Sweden. The results showed that, in order to achieve the best control, the aim should be to cover the complete stump surface with the treatment agent. In another field experiment in southern Sweden the effectiveness of Finish and Swedish strains of P.
    [Show full text]
  • Basidiomycota) in Finland
    Mycosphere 7 (3): 333–357(2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/7/3/7 Copyright © Guizhou Academy of Agricultural Sciences Extensions of known geographic distribution of aphyllophoroid fungi (Basidiomycota) in Finland Kunttu P1, Kulju M2, Kekki T3, Pennanen J4, Savola K5, Helo T6 and Kotiranta H7 1University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland 2Biodiversity Unit P.O. Box 3000, FI-90014 University of Oulu, Finland 3Jyväskylä University Museum, Natural History Section, P.O. BOX 35, FI-40014 University of Jyväskylä, Finland 4Pentbyntie 1 A 2, FI-10300 Karjaa, Finland 5The Finnish Association for Nature Conservation, Itälahdenkatu 22 b A, FI-00210 Helsinki, Finland 6Erätie 13 C 19, FI-87200 Kajaani, Finland 7Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland Kunttu P, Kulju M, Kekki T, Pennanen J, Savola K, Helo T, Kotiranta H 2016 – Extensions of known geographic distribution of aphyllophoroid fungi (Basidiomycota) in Finland. Mycosphere 7(3), 333–357, Doi 10.5943/mycosphere/7/3/7 Abstract This article contributes the knowledge of Finnish aphyllophoroid funga with nationally or regionally new species, and records of rare species. Ceriporia bresadolae, Clavaria tenuipes and Renatobasidium notabile are presented as new aphyllophoroid species to Finland. Ceriporia bresadolae and R. notabile are globally rare species. The records of Ceriporia aurantiocarnescens, Crustomyces subabruptus, Sistotrema autumnale, Trechispora elongata, and Trechispora silvae- ryae are the second in Finland. New records (or localities) are provided for 33 species with no more than 10 records in Finland. In addition, 76 records of aphyllophoroid species are reported as new to some subzones of the boreal vegetation zone in Finland.
    [Show full text]
  • Molecular Identification of Fungi
    Molecular Identification of Fungi Youssuf Gherbawy l Kerstin Voigt Editors Molecular Identification of Fungi Editors Prof. Dr. Youssuf Gherbawy Dr. Kerstin Voigt South Valley University University of Jena Faculty of Science School of Biology and Pharmacy Department of Botany Institute of Microbiology 83523 Qena, Egypt Neugasse 25 [email protected] 07743 Jena, Germany [email protected] ISBN 978-3-642-05041-1 e-ISBN 978-3-642-05042-8 DOI 10.1007/978-3-642-05042-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938949 # Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany, kindly supported by ‘leopardy.com’ Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to Prof. Lajos Ferenczy (1930–2004) microbiologist, mycologist and member of the Hungarian Academy of Sciences, one of the most outstanding Hungarian biologists of the twentieth century Preface Fungi comprise a vast variety of microorganisms and are numerically among the most abundant eukaryotes on Earth’s biosphere.
    [Show full text]
  • Heterobasidion Root Rot
    Heterobasidion root rot Genetic mapping of virulence and evolutionary history Kerstin Dalman Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Pathology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2010 Acta Universitatis Agriculturae Sueciae 2010:81 ISSN 1652-6880 ISBN 978-91-576-7526-2 © 2010 Kerstin Dalman, Uppsala Print: SLU Service/Repro, Uppsala 2010 2 Heterobasidion root rot. Genetic mapping of virulence and evolutionary history Abstract Heterobasidion annosum (Fr.) Bref. sensu lato (s.l.) is a necrotrophic pathogen causing damage to conifers in the Northern Hemisphere. H. annosum s.l. consists of five species: three European [H. annosum sensu stricto (s.s.), H. parviporum and H. abietinum] and two North American (H. irregulare and H. occidentale); all with different but partially overlapping host preferences. A multilocus phylogenetic tree was built and the divergence times were estimated. Plate tectonics is likely to have been the main factor influencing Heterobasidion speciation and biogeography. Along with the geographical separation, the Heterobasidion species have specialized on different host genera. The H. annosum species complex originated in Laurasia and the H. annosum s.s./H. irregulare and H. parviporum/H. abietinum/H. occidentale ancestral species emerged between 45 million–60 million years ago in the Palaearctic. The data imply that H. irregulare and H. occidentale colonized North America via different routes: H. irregulare colonizing from the east via Trans Atlantic land bridges and H. occidentale colonizing from the west via the Bering Land Bridge. Alternatively H. occidentale originated from North America. Identification of virulence factors is important for understanding the Heterobasidion–conifer pathosystem.
    [Show full text]
  • Basidiomycetes Inhabiting the Ornamental Tree Catalpa (Bignoniaceae)
    ©Österreichische Mykologische Gesellschaft, Austria, download unter www.biologiezentrum.at Österr. Z. Pilzk. 19(2010) Basidiomycetes inhabiting the ornamental tree Catalpa (Bignoniaceae) JURAJ PACLT Nam Benku, Martina 24/4083 81107 Bratislava 1, Slovakia Accepted 11. 1.2010 Key words: Basidiomycetes. - Fungus-host associations, Catalpa. Abstract: Attention is paid to all basidiomycetous species hitherto known to occur on Catalpa as host plant. During 1955-1997 more than 20 new fungus-host associations from diverse species of Catalpa grown in Europe could be found by the author. Zusammenfassung: Basidiomyzeten, die bisher von Catalpa als Wirtspflanze bekannt sind, werden aufgeführt. Dem Autor gelang es, 1955-1997 mehr als zwanzig neue Pilz-Wirt-Assoziationen von ver- schiedenen in Europa angepflanzten Catalpa-Artcn zu finden. Catalpa SCOP. (Bignoniaceae), called cigar-tree in the USA, a genus native to the United States of America [Southern Catalpa = C. hignonioides WALTER, Hardy Ca- talpa = C. speciosa (WARDER ex BARNEY) ENGELM.], West Indies and/or China. Common species of the genus are favoured as ornamental trees due to their showy panicles of flowers and long cigar-like pendent capsular fruits as well. In Europe, spe- cies of Catalpa are often cultivated as park- and street-trees. OUDEMANS (1923) mentioned only four species of Basidiomycetes for Catalpa, i.e., Polyponts distortus (= Abortipoms biennis). Pistil/aha mucedina. Pistil/aria mucoroides, and Polyponis distinctus (nomen dubium). Six further basidiomycetous species collected on Catalpa were listed in the next host index by SEYMOUR (1929): Exidia saccharina, Polyponis adustus (= Bjerkandera adusta), Schizophyllum commune, Stereum albobadium (= Dendrophora alhobadia), Stereum versicolor, and Trametes sepium (= Antrodia al- bida).
    [Show full text]
  • FPL 15 – Annosus Root Rot the Information Accessed from This Screen Is Based on the Publication: Morrison, D.J
    FPL 15 – Annosus Root Rot The information accessed from this screen is based on the publication: Morrison, D.J. 1979. Annosus Root Rot in Douglas-fir and Western Hemlock in British Columbia. Forestry Canada, Forest Insect and Disease Survey, Forest Pest Leaflet No. 15 8p. Fomes annosus is now know as Heterobasidion annosum Introduction Annosus root disease, caused by the fungus Fomes annosus (Fr,) Karst.Heterobasidion annosum (Fr.) Bref.], is an important disease of immature coniferous forests in the temperate zone. In the past 30 years, the incidence and damage caused by the fungus has increased greatly, particularly in plantations in Europe and parts of the southeastern United States. This increase has been attributed to spacing and thinning operations that create conditions favorable for spread of the fungus. Intensive forest management is creating a potentially serious problem in British Columbia. This leaflet describes annosus root disease as it occurs in British Columbia, including the hosts, range and life history of the fungus, and symptoms, damage and control of the disease. Distribution and Hosts The distribution of F. annosus in B.C. has been determined by decay sample and sporophore collection and basidiospore trapping. Fomes annosus occurs throughout the coastal Douglas-fir and western hemlock zones and adjacent parts of the coastal sub-alpine zone, and in the interior western hemlock zone and adjacent parts of the interior Douglas-fir and subalpine zones. In coastal B.C., F. annosus causes butt rot in old-growth trees, particularly western hemlock (Tsuga heterophylla (Raf.) Sarg.) and amabilis fir (Abies amabilis (Dougl.) Forbes), and root and butt rot in second growth western hemlock, Abies spp., Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), western red cedar (Thuja plicata Donn) and Sitka spruce (Picea sitchensis (Bong.) Carr.)(4).
    [Show full text]
  • Identification, Effects and Management of 5 Types of Decay Organisms Found in Seattle Parks
    Identification, Effects and Management of 5 types of decay organisms found in Seattle Parks Chris Rippey, Arborist [email protected] • Third generation Arborist • Grew up in the bay area of California. • Was 16 when I started working with my dad in tree care • I fell in love with tree work, not trees • Managed the preventative tree maintenance programs at Stanford University for 14 years. • Moved to Washington and began working for Seattle Parks 2 ½ years ago Seattle Parks System - 6,412 Total Acres - 4,016 Acres of Developed Park - 2,396 Acres of Natural Area - 480 Parks - >300,000 trees - >16,000 trees in our tree inventory Seward Park 1920 Ravenna Park 1922 What are we focusing on? - 171,615 trees in our Buffer Zone. - Buffer Zone is a 50’ buffer around high use areas like beaches, paved roads and trails, playgrounds…etc) - Buffer Zones are on average 56% of a given park Tree Risk Inspections Terms & Matrix TERM DEFINITION Likelihood of failure and impacts Imminent Failure has started or is most likely to occur in the near future even if there is no weather forces/rare occurrence. Will fail in a storm. Probable Failure may be expected under normal weather within a time frame. Likely to fail in a severe storm. Possible Failure could occur, but is unlikely during normal weather. May fail in a severe storm. Improbable Tree or branch failure not likely under normal conditions and may not fail in severe weather within a time frame. Risk rating High Failed tree or part will likely impact a target.
    [Show full text]
  • The Cardioprotective Properties of Agaricomycetes Mushrooms Growing in the Territory of Armenia (Review) Susanna Badalyan, Anush Barkhudaryan, Sylvie Rapior
    The Cardioprotective Properties of Agaricomycetes Mushrooms Growing in the Territory of Armenia (Review) Susanna Badalyan, Anush Barkhudaryan, Sylvie Rapior To cite this version: Susanna Badalyan, Anush Barkhudaryan, Sylvie Rapior. The Cardioprotective Properties of Agari- comycetes Mushrooms Growing in the Territory of Armenia (Review). International Journal of Medic- inal Mushrooms, Begell House, 2021, 23 (5), pp.21-31. 10.1615/IntJMedMushrooms.2021038280. hal-03202984 HAL Id: hal-03202984 https://hal.umontpellier.fr/hal-03202984 Submitted on 20 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Cardioprotective Properties of Agaricomycetes Mushrooms Growing in the territory of Armenia (Review) Susanna M. Badalyan 1, Anush Barkhudaryan 2, Sylvie Rapior 3 1Laboratory of Fungal Biology and Biotechnology, Institute of Pharmacy, Department of Biomedicine, Yerevan State University, Yerevan, Armenia; 2Department of Cardiology, Clinic of General and Invasive Cardiology, University Hospital № 1, Yerevan State Medical University, Yerevan, Armenia;
    [Show full text]
  • Heterobasidion Annosum Induces Apoptosis in DLD-1 Cells and Decreases Colon Cancer Growth in in Vivo Model
    International Journal of Molecular Sciences Article Heterobasidion annosum Induces Apoptosis in DLD-1 Cells and Decreases Colon Cancer Growth in In Vivo Model Anna Sadowska 1,*, Ewa Zapora 2, Diana Sawicka 1, Katarzyna Niemirowicz-Laskowska 1 , Arkadiusz Sura˙zy´nski 3, Katarzyna Sułkowska-Ziaja 4 , Katarzyna Kała 4, Marcin Stocki 2 , Marek Wołkowycki 2, Sławomir Bakier 2, Anna Pawlik 5 , Magdalena Jaszek 5, Bo˙zenaMuszy ´nska 4 and Halina Car 1 1 Department of Experimental Pharmacology, Medical University of Białystok, Szpitalna 37, 15-295 Bialystok, Poland; [email protected] (D.S.); [email protected] (K.N.-L.); [email protected] (H.C.) 2 Institute of Forest Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; [email protected] (E.Z.); [email protected] (M.S.); [email protected] (M.W.); [email protected] (S.B.) 3 Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; [email protected] 4 Department of Pharmaceutical Botany, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; [email protected] (K.S.-Z.); [email protected] (K.K.); [email protected] (B.M.) 5 Department of Biochemistry and Biotechnology, Maria Curie Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; [email protected] (A.P.); [email protected] (M.J.) * Correspondence: [email protected]; Tel.: +48-85-748-5554 Received: 8 April 2020; Accepted: 9 May 2020; Published: 13 May 2020 Abstract: Application of substances from medicinal mushrooms is one of the interesting approaches to improve cancer therapy.
    [Show full text]
  • Polypore Fungi As a Flagship Group to Indicate Changes in Biodiversity – a Test Case from Estonia Kadri Runnel1* , Otto Miettinen2 and Asko Lõhmus1
    Runnel et al. IMA Fungus (2021) 12:2 https://doi.org/10.1186/s43008-020-00050-y IMA Fungus RESEARCH Open Access Polypore fungi as a flagship group to indicate changes in biodiversity – a test case from Estonia Kadri Runnel1* , Otto Miettinen2 and Asko Lõhmus1 Abstract Polyporous fungi, a morphologically delineated group of Agaricomycetes (Basidiomycota), are considered well studied in Europe and used as model group in ecological studies and for conservation. Such broad interest, including widespread sampling and DNA based taxonomic revisions, is rapidly transforming our basic understanding of polypore diversity and natural history. We integrated over 40,000 historical and modern records of polypores in Estonia (hemiboreal Europe), revealing 227 species, and including Polyporus submelanopus and P. ulleungus as novelties for Europe. Taxonomic and conservation problems were distinguished for 13 unresolved subgroups. The estimated species pool exceeds 260 species in Estonia, including at least 20 likely undescribed species (here documented as distinct DNA lineages related to accepted species in, e.g., Ceriporia, Coltricia, Physisporinus, Sidera and Sistotrema). Four broad ecological patterns are described: (1) polypore assemblage organization in natural forests follows major soil and tree-composition gradients; (2) landscape-scale polypore diversity homogenizes due to draining of peatland forests and reduction of nemoral broad-leaved trees (wooded meadows and parks buffer the latter); (3) species having parasitic or brown-rot life-strategies are more substrate- specific; and (4) assemblage differences among woody substrates reveal habitat management priorities. Our update reveals extensive overlap of polypore biota throughout North Europe. We estimate that in Estonia, the biota experienced ca. 3–5% species turnover during the twentieth century, but exotic species remain rare and have not attained key functions in natural ecosystems.
    [Show full text]