Exotic Livestock and Ratites Current As of August 27, 2021

Total Page:16

File Type:pdf, Size:1020Kb

Exotic Livestock and Ratites Current As of August 27, 2021 Animal Movement Inquires: Permits Help Desk 512-719-0777 or 800-550-8242 [email protected] Exotic Livestock and Ratites Current as of August 27, 2021 Exotic livestock include grass-eating or plant-eating, single-hooved or cloven-hooved mammals that are not indigenous to Texas and belong to one of the following families: Cervidae, Camelidae, Bovidae, Swine, or Ratite. Interstate Movement Intrastate Movement (Out-of-State Moving into Texas) (Texas Moving within Texas) General Entry Requirements General Movement Requirements 1. Any exotic livestock or ratites that are infected, 1. Any exotic livestock or ratites that are under a exposed or quarantined in any manner for an TAHC quarantine cannot be moved from a infectious, contagious or communicable disease may Quarantined area unless movement is not enter the state. Entry into Texas may be granted authorized by the TAHC. Contact the TAHC at 1- on a case-by-case basis only after permission is 800-550-8242. granted from the Texas Animal Health Commission (TAHC) Executive Director. Contact TAHC at 1-800- 2. For exhibition & event requirements visit 550-8242. https://www.tahc.texas.gov/regs/Exhibition_ Event_Movement_Requirements.pdf. 2. Unless otherwise noted or excepted, a Certificate of Veterinary Inspection (CVI) is required within 30 days Additional Requirements for Exotic Chronic prior to entry into Texas. Wasting Disease (CWD) Susceptible Species 2.1 Note: All cervidae, bovine or porcine coming Exotic CWD susceptible species include all species in from a vesicular stomatitis virus (VSV) affected the Cervidae family that have had a CWD diagnosis state must have a CVI issued within 14 days prior confirmed by an official test conducted by an to entry and a VSV status for the premises or approved laboratory. This includes white-tailed deer, area should be recorded on the CVI. mule deer, black-tailed deer, North American elk or wapiti, red deer, Sika deer, moose, reindeer and 3. An entry permit is required within 15 days prior to caribou and any associated subspecies and hybrids. entry unless the animal is entering for exhibition purposes only. Entry permits may be obtained at any Note: All mule deer, white-tailed deer, and native time by calling 512-719-0777, or 1-800-550-8242, ext. species under the jurisdiction of the Texas Parks and 777, or by emailing the TAHC at Wildlife Department are excluded from this [email protected]. definition and application of this section. 4. For exhibition & event requirements visit 3. Identification Requirements: https://www.tahc.texas.gov/regs/Exhibition_ 3.1 In order to move live Exotic CWD Susceptible Event_Movement_Requirements.pdf. Species to or from a premises, the owner must obtain a Premises Identification Number Additional Entry Requirements by Exotic Livestock (PIN). Family 3.2 Live Exotic CWD Susceptible Species moved or 5. Camelidae Requirements transported within the state shall be 5.1 Camelidae is defined as members of the family identified with an official identification device, of animals which include camels, llamas, vicunas which may include an eartag that conforms to & domestic members who include llama, alpaca, the USDA alphanumeric national uniform ear and guanaco. tagging system (NUES), a visible and legible animal identification number (AIN) or other This is an unofficial summary of TAHC movement requirements. Visit Title 4, Part 2 of the Texas Administrative Code for official requirements: https://texreg.sos.state.tx.us/public/readtac$ext.ViewTAC?tac_view=3&ti=4&pt=2. Exotic Livestock and Ratites Interstate Movement Intrastate Movement (Out-of-State Moving into Texas) (Texas Moving within Texas) 5.2 Brucellosis or tuberculosis testing is not identification methods approved by the required at this time. The TAHC may require commission, including a RFID device. testing when there is an epidemiological risk of exposure or infection. 4. Movement Reporting 4.1 A complete movement record for all live 6. Ratite Requirements Exotic CWD Susceptible Species that are 6.1 Ratites are exotic fowl with a flat breastbone and moved onto or off of a premises must be small or nonexistent wings, such as ostriches, submitted to the TAHC within 48 hours of the emu, rheas, and kiwi. movement, either in hard or electronic copy 6.2 Individual identification (RFID device, a on forms provided or authorized by the TAHC. permanently attached tag or an implanted a. The person moving the Exotic CWD electronic device (microchip). Susceptible Species must have 6.3 A negative avian influenza test required within documentation with the Exotic CWD 30 days prior to entry. Susceptible Species being moved to 6.4 A negative Salmonella pullorum-typhoid test show compliance with the required within 30 days prior to entry. requirements. 6.5 Birds or hatching eggs must originate from b. A copy of this documentation must be flocks that show no evidence of infectious provided to any market selling these disease and have no history of avian influenza in species. the past six months. c. Direct movement reporting to one of 6.6 Destined for slaughter only, may enter with an the following: entry permit and either an owner-shipper • Texas Animal Health Commission, statement or certificate of veterinary inspection CWD Susceptible Species without meeting the testing or identification Reporting, P.O. Box 12966, Austin, requirements. Texas78711-2966; • by fax to (512) 719-0729; or 7. Exotic Bovidae Requirements • by email to 7.1 Exotic Bovidae are non-indigenous members of [email protected]. the family of animals which includes water buffalo, gnu (wildebeest), addax, antelope and 5. Annual Inventory & Mortality Logs nilgai (among others). 5.1 An owner of a premises where Exotic CWD 7.2 A negative brucellosis test is required within 30 Susceptible Species are located within a high days prior to entry. fence must keep herd records that include an 7.3 A negative tuberculosis test is required within 60 annual inventory and mortality log for all days prior to entry. Exotic CWD Susceptible Species. 5.2 The inventory must be submitted to the TAHC 8. Exotic Cervidae Requirements on or before April 1 of each year. 8.1 Exotic Cervidae are non-indigenous members of 5.3 An annual inventory form can be obtained the family of animals which includes deer, elk, here. moose, caribou, reindeer and the sub-family 5.4 A mortality log can be obtained here. musk deer. 8.2 A negative brucellosis test within 30 days prior 6. Dealer Requirements to entry if from the Brucellosis Designated 6.1 A dealer is a person engaged in the business Surveillance Area (DSA) or for any free ranging of buying or selling Exotic CWD Susceptible exotic cervidae trapped for movement. Species in commerce on the person's own 8.3 Classified negative to two tuberculosis tests account, as an employee or agent of a which were conducted no less than 90 days vendor, purchaser, or both, or on a apart; the second test was conducted within 90 commission basis. This is an unofficial summary of TAHC movement requirements. Visit the TAC Administrative Code, Part 2: https://texreg.sos.state.tx.us/public/readtac$ext.ViewTAC?tac_view=3&ti=4&pt=2. Exotic Livestock and Ratites Interstate Movement Intrastate Movement (Out-of-State Moving into Texas) (Texas Moving within Texas) days prior to date of movement; and the animals 6.2 To maintain separate herd status for the were isolated from all other members of the animals a dealer sells, a dealer shall maintain herd during the testing period; or separate herd facilities and separate water (a) Originate from an accredited free herd; or sources; there shall be at least 30 feet (b) Originate from a qualified herd and have between the perimeter fencing around been classified negative to a tuberculosis separate herds; and no commingling of test 90 days prior to movement. If the animals may occur. qualifying herd test was administered within 6.3 Movement of animals between herds must 90 days of movement, the animal(s) do not be recorded as if they were separately owned require an additional test; or herds. A dealer must maintain records for all (c) Originate from a monitored herd and have Exotic CWD Susceptible Species transported been classified negative to an official within the state or where there is a transfer of tuberculosis test 90 days prior to the date of ownership, and provide these to TAHC movement; or personnel upon request. Records required to (d) Be less than 12 months of age, originate and be kept under the provisions of this section were born in accredited, qualified, or must be maintained for not less than five monitored herds and have not been years and must include the following exposed to cervids from a lower status. information: (e) Cervids moving from an American Zoo and (a) Owner's name; Aquarium Association (AZAA) accredited (b) Location where the animal was sold facility directly to another facility accredited or purchased; by the AZAA are exempt from these entry (c) Official ID and/or Ranch tag requirements provided those cervids being (additional field for retag); moved are not commingled with cervids (d) Gender and age of animal; from other sources during the transfer. (e) Source of animal (if purchased 8.4 Cervids originating from the tuberculosis addition); restricted zone(s) in Michigan shall be tested in (f) Movement to other premises; and accordance with Title 9 of the Code of Federal (b) Disposition of the animal. Regulations, Part 77, prior to entry with results recorded on the certificate of veterinary 7. CWD Movement Restriction Zones inspection. 7.1 Containment Zones: No Exotic CWD 8.5 Exotic CWD Susceptible Species must also meet Susceptible Species may be transported the following requirements: outside a Containment Zone (CZ) unless from (a) All requests for entry must be in writing, a herd with a certified status as established accompanied with the information through §40.3(c)(6) (relating to Herd Status necessary to support import qualifications of Plans for Cervidae).
Recommended publications
  • Wild Or Bactrian Camel French: German: Wildkamel Spanish: Russian: Dikiy Verblud Chinese
    1 of 4 Proposal I / 7 PROPOSAL FOR INCLUSION OF SPECIES ON THE APPENDICES OF THE CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OF WILD ANIMALS A. PROPOSAL: Inclusion of the Wild camel Camelus bactrianus in Appendix I of the Convention on the Conservation of Migratory Species of Wild Animals: B. PROPONENT: Mongolia C. SUPPORTING STATEMENT 1. Taxon 1.1. Classis: Mammalia 1.2. Ordo: Tylopoda 1.3. Familia: Camelidae 1.4. Genus: Camelus 1.5. Species: Camelus bactrianus Linnaeus, 1758 1.6. Common names: English: Wild or Bactrian camel French: German: Wildkamel Spanish: Russian: Dikiy verblud Chinese: 2. Biological data 2.1. Distribution Wild populations are restricted to 3 small, remnant populations in China and Mongolia:in the Taklamakan Desert, the deserts around Lop Nur, and the area in and around region A of Mongolia’s Great Gobi Strict Protected Area (Reading et al 2000). In addition, there is a small semi-captive herd of wild camels being maintained and bred outside of the Park. 2.2. Population Surveys over the past several decades have suggested a marked decline in wild bactrian camel numbers and reproductive success rates (Zhirnov and Ilyinsky 1986, Anonymous 1988, Tolgat and Schaller 1992, Tolgat 1995). Researchers suggest that fewer than 500 camels remain in Mongolia and that their population appears to be declining (Xiaoming and Schaller 1996). Globally, scientists have recently suggested that less than 900 individuals survive in small portions of Mongolia and China (Tolgat and Schaller 1992, Hare 1997, Tolgat 1995, Xiaoming and Schaller 1996). However, most of the population estimates from both China and Mongolia were made using methods which preclude rigorous population estimation.
    [Show full text]
  • Camelids: New Players in the International Animal Production Context
    Tropical Animal Health and Production (2020) 52:903–913 https://doi.org/10.1007/s11250-019-02197-2 REVIEWS Camelids: new players in the international animal production context Mousa Zarrin1 & José L. Riveros2 & Amir Ahmadpour1,3 & André M. de Almeida4 & Gaukhar Konuspayeva5 & Einar Vargas- Bello-Pérez6 & Bernard Faye7 & Lorenzo E. Hernández-Castellano8 Received: 30 October 2019 /Accepted: 22 December 2019 /Published online: 2 January 2020 # Springer Nature B.V. 2020 Abstract The Camelidae family comprises the Bactrian camel (Camelus bactrianus), the dromedary camel (Camelus dromedarius), and four species of South American camelids: llama (Lama glama),alpaca(Lama pacos)guanaco(Lama guanicoe), and vicuña (Vicugna vicugna). The main characteristic of these species is their ability to cope with either hard climatic conditions like those found in arid regions (Bactrian and dromedary camels) or high-altitude landscapes like those found in South America (South American camelids). Because of such interesting physiological and adaptive traits, the interest for these animals as livestock species has increased considerably over the last years. In general, the main animal products obtained from these animals are meat, milk, and hair fiber, although they are also used for races and work among other activities. In the near future, climate change will likely decrease agricultural areas for animal production worldwide, particularly in the tropics and subtropics where competition with crops for human consumption is a major problem already. In such conditions, extensive animal production could be limited in some extent to semi-arid rangelands, subjected to periodical draughts and erratic patterns of rainfall, severely affecting conventional livestock production, namely cattle and sheep.
    [Show full text]
  • Bactrian Camel, Two-Humped Camel
    Camelus ferus/bactrianus Common name: Bactrian camel, two-humped camel Local name: Havtagai (Mongolian), Wildkamel (German), Jya nishpa yapung (Ladakhi) Classification: Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Artiodactyla Family: Camelidae Genus: Camelus Species: ferus/bactrianus Profile: The scientific name of the wild Bactrian camel is Camelus ferus, while the domesticated form is called Camelus bactrianus. The distinctive feature of the animal is that it is two-humped whereas the Dromedary camel has a single hump. DNA tests have revealed that there are two or three distinct genetic differences and about 3% base difference between the wild and domestic populations of Bactrian camels. They also differ physically. The wild Bactrian camel is smaller and slender than the domestic breed. The wild camels have a sandy gray- brown coat while the domestic ones have a dark brown coat. The predominant difference between them however is the shape of the humps. While that of the wild camel are small and pyramid-like, those of the domestic ones are large and irregular. The face of a Bactrian camel is long and triangular with a split upper lip. The Bactrian camel is highly adapted to surviving the cold desert climate. Each foot has an undivided sole with two large toes that can spread wide apart for walking on sand. The ears and nose are lined with hair to protect against sand and the muscular nostrils can be closed during sandstorms. The eyes are protected from sand and debris by a double layer of long eyelashes while bushy eyebrows give protection from the sun. It grows a thick shaggy coat during winter, which is shed very rapidly in spring to give the animal a shorn look.
    [Show full text]
  • Cuticle and Cortical Cell Morphology of Alpaca and Other Rare Animal Fibres
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional Universidad Nacional Autónoma de Chota The Journal of The Textile Institute ISSN: 0040-5000 (Print) 1754-2340 (Online) Journal homepage: http://www.tandfonline.com/loi/tjti20 Cuticle and cortical cell morphology of alpaca and other rare animal fibres B. A. McGregor & E. C. Quispe Peña To cite this article: B. A. McGregor & E. C. Quispe Peña (2017): Cuticle and cortical cell morphology of alpaca and other rare animal fibres, The Journal of The Textile Institute, DOI: 10.1080/00405000.2017.1368112 To link to this article: http://dx.doi.org/10.1080/00405000.2017.1368112 Published online: 18 Sep 2017. Submit your article to this journal Article views: 7 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjti20 Download by: [181.64.24.124] Date: 25 September 2017, At: 13:39 THE JOURNAL OF THE TEXTILE INSTITUTE, 2017 https://doi.org/10.1080/00405000.2017.1368112 Cuticle and cortical cell morphology of alpaca and other rare animal fibres B. A. McGregora and E. C. Quispe Peñab aInstitute for Frontier Materials, Deakin University, Geelong, Australia; bNational University Autonoma de Chota, Chota, Peru ABSTRACT ARTICLE HISTORY The null hypothesis of the experiments reported is that the cuticle and cortical morphology of rare Received 6 March 2017 animal fibres are similar. The investigation also examined if the productivity and age of alpacas were Accepted 11 August 2017 associated with cuticle morphology and if seasonal nutritional conditions were related to cuticle scale KEYWORDS frequency.
    [Show full text]
  • North Carolina Department of Agriculture and Consumer Services Veterinary Division
    North Carolina Department of Agriculture and Consumer Services Veterinary Division North Carolina Premise Registration Form A complete application should be emailed to [email protected], faxed to (919)733-2277, or mailed to: NC Department of Agriculture Veterinary Division 1030 Mail Service Center Raleigh, NC 27699-1030 If needed, check the following: ☐ Cattle Tags ☐ Swine Tags Premises Owner Account Information Business/Farm Name: Business Type: ☐Individual ☐Incorporated ☐Partnership ☐ LLC ☐ LLP ☐ Government Entity ☐Non-Profit Organization Primary Contact: Phone Number: Mailing Address: City: State: Zip: County: Email Address: Secondary Contact (Optional): Phone Number: Premises Information: Primary location where livestock reside. If animals are managed on separate locations, apply for multiple premises ID’s. Premises Type: ☐Production Unit/Farm/Ranch ☐Market/Collection Point ☐Exhibition ☐Clinic ☐Laboratory ☐ Non-Producer Participant (ie: DHIA, non-animal perm, etc.) ☐Slaughter Plant ☐Other: Premises Name: Premises Address (If different from mailing address): City: State: Zip: County: GPS Coordinates at Entrance (If known): Latitude N Longitude W Species Information: Check all that apply. Quantities of animals are only reported to the state database. This information is protected by GS 106-24.1. This and all other statues can be viewed at www.ncleg.net. If you grow poultry or swine on a contract for a corporation, please indicate production system and corporation for which you grow. Cattle Quantity Equine Quantity Goats Quantity Sheep
    [Show full text]
  • Whole-Genome Sequencing of Wild Siberian Musk
    Yi et al. BMC Genomics (2020) 21:108 https://doi.org/10.1186/s12864-020-6495-2 RESEARCH ARTICLE Open Access Whole-genome sequencing of wild Siberian musk deer (Moschus moschiferus) provides insights into its genetic features Li Yi1†, Menggen Dalai2*†, Rina Su1†, Weili Lin3, Myagmarsuren Erdenedalai4, Batkhuu Luvsantseren4, Chimedragchaa Chimedtseren4*, Zhen Wang3* and Surong Hasi1* Abstract Background: Siberian musk deer, one of the seven species, is distributed in coniferous forests of Asia. Worldwide, the population size of Siberian musk deer is threatened by severe illegal poaching for commercially valuable musk and meat, habitat losses, and forest fire. At present, this species is categorized as Vulnerable on the IUCN Red List. However, the genetic information of Siberian musk deer is largely unexplored. Results: Here, we produced 3.10 Gb draft assembly of wild Siberian musk deer with a contig N50 of 29,145 bp and a scaffold N50 of 7,955,248 bp. We annotated 19,363 protein-coding genes and estimated 44.44% of the genome to be repetitive. Our phylogenetic analysis reveals that wild Siberian musk deer is closer to Bovidae than to Cervidae. Comparative analyses showed that the genetic features of Siberian musk deer adapted in cold and high-altitude environments. We sequenced two additional genomes of Siberian musk deer constructed demographic history indicated that changes in effective population size corresponded with recent glacial epochs. Finally, we identified several candidate genes that may play a role in the musk secretion based on transcriptome analysis. Conclusions: Here, we present a high-quality draft genome of wild Siberian musk deer, which will provide a valuable genetic resource for further investigations of this economically important musk deer.
    [Show full text]
  • South American Camelids – Origin of the Species
    SOUTH AMERICAN CAMELIDS – ORIGIN OF THE SPECIES PLEISTOCENE ANCESTOR Old World Camels VicunaLLAMA Guanaco Alpaca Hybrids Lama Dromedary Bactrian LAMA Llamas were not always confined to South America; abundant llama-like remains were found in Pleistocene deposits in the Rocky Mountains and in Central America. Some of the fossil llamas were much larger than current forms. Some species remained in North America during the last ice ages. Llama-like animals would have been a common sight in 25,000 years ago, in modern-day USA. The camelid lineage has a good fossil record indicating that North America was the original home of camelids, and that Old World camels crossed over via the Bering land bridge & after the formation of the Isthmus of Panama three million years ago; it allowed camelids to spread to South America as part of the Great American Interchange, where they evolved further. Meanwhile, North American camelids died out about 40 million years ago. Alpacas and vicuñas are in genus Vicugna. The genera Lama and Vicugna are, with the two species of true camels. Alpaca (Vicugna pacos) is a domesticated species of South American camelid. It resembles a small llama in superficial appearance. Alpacas and llamas differ in that alpacas have straight ears and llamas have banana-shaped ears. Aside from these differences, llamas are on average 30 to 60 centimeters (1 to 2 ft) taller and proportionally bigger than alpacas. Alpacas are kept in herds that graze on the level heights of the Andes of Ecuador, southern Peru, northern Bolivia, and northern Chile at an altitude of 3,500 m (11,000 ft) to 5,000 m (16,000 ft) above sea-level, throughout the year.
    [Show full text]
  • 1 BOARD of ANIMAL HEALTH Subpart 2 Chapter 12 Sheep And
    BOARD OF ANIMAL HEALTH Subpart 2 Chapter 12 Sheep and Goats 109 All sheep and goats, except those for immediate slaughter shall be accompanied by an official certificate of veterinary inspection (OCVI) and shall comply with the following: 1. Intact sheep and goats require individual identification by an official USDA Scrapie eartag, brand, or tattoo recorded on the OCVI. 2. “I certify these animals are free of clinical signs of the diseases contagious footrot, keratoconjunctivitis, contagious ecthyma (Orf), scabies and lice and that the sexually intact animals represented on this form are not known to be scrapie- positive, suspect, high risk, or exposed, and did not originate from a known infected, source, exposed, or noncompliant flock.” 3. When originating from an area known to have scabies, must be dipped within ten (10) days immediately preceding the date of entry in an USDA approved dip, and maintained on absolutely clean premises until delivered to the final destination. Dairy goats and dairy sheep maintained separate from other sheep and goats are exempt from dipping when certified free of scabies on OCVI. 4. Dairy goats and dairy sheep over 6 months of age must be negative to an official tuberculin test and an official brucellosis test made within 30 days immediately preceding date of entry. 5. All sheep and goats for immediate slaughter shall be consigned to a recognized slaughtering establishment on either an OCVI or permit or waybill or inspection certification from federally inspected stockyards. In either instance, a copy shall accompany sheep and goats and a copy shall be forwarded to the State Veterinarian of Mississippi.
    [Show full text]
  • Pleistocene Mammals from Extinction Cave, Belize
    Canadian Journal of Earth Sciences Pleistocene Mammals From Extinction Cave, Belize Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2018-0178.R3 Manuscript Type: Article Date Submitted by the 04-May-2019 Author: Complete List of Authors: Churcher, C.S.; University of Toronto, Zoology Central America, Pleistocene, Fauna, Vertebrate Palaeontology, Keyword: Limestone cave Is the invited manuscript for consideration in a Special Not applicableDraft (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 43 Canadian Journal of Earth Sciences 1 1 PLEISTOCENE MAMMALS FROM EXTINCTION CAVE, BELIZE 2 by C.S. CHURCHER1 Draft 1Department of Zoology, University of Toronto, Toronto, Ontario Canada M5S 2C6 and 322-240 Dallas Rd., Victoria, British Columbia, Canada V8V 4X9 (corresponding address): e-mail [email protected] https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 43 2 4 5 ABSTRACT. A small mammalian fauna is recorded from Extinction Cave (also called Sibun 6 Cave), east of Belmopan, on the Sibun River, Belize, Central America. The animals recognized 7 are armadillo (†Dasypus bellus), American lion (†Panthera atrox), jaguar (P. onca), puma or 8 mountain lion (Puma concolor), Florida spectacled bear (†Tremarctos floridanus), javelina or 9 collared peccary (Pecari tajacu), llama (Camelidae indet., ?†Palaeolama mirifica), red brocket 10 deer (Mazama americana), bison (Bison sp.) and Mexican half-ass (†Equus conversidens), and 11 sabre-tooth cat († Smilodon fatalis) may also be represented (‘†’ indicates an extinct taxon). 12 Bear and bison are absent from the region today. The bison record is one of the more southernly 13 known. The bear record is almost the mostDraft westerly known and a first for Central America.
    [Show full text]
  • Slaughter and Killing of Minority Farmed Species
    Charity Registered in England & Wales No 1159690 Charitable Incorporated Organisation Technical Note No 25 Slaughter and Killing of Minority Farmed Species Summary The last twenty years or so have seen many big changes in British agriculture. The livestock sector in particular has had to change radically to adapt to new legislation, stricter production standards set by the customer and changes to the subsidy system. Some livestock farmers have diversified into the rearing of species not indigenous to the UK: these include the Asian water buffalo, North American bison, ostrich, camelids and species that lived here in ancient times, such as wild boar. As with domestic livestock, these animals are bred and reared for various reasons, the main ones being milk, meat and wool or fibre production. When slaughtering or killing these animals, it is highly likely that the slaughterman and/or veterinary surgeon will be presented with a number of challenges not normally experienced with domesticated livestock. It is essential that careful planning and preparation takes place before any attempt is made to slaughter or kill these animals. Humane Slaughter Association The Old School. Brewhouse Hill Wheathampstead. Herts AL4 8AN, UK t 01582 831919 f: 01582 831414 e: [email protected] w: www.hsa.org.uk Registered in England Charity No 1159690 Charitable Incorporated Organisation www.hsa.org.uk What are the minority farmed species in the UK? For the purposes of this leaflet, they are deer, ostrich, wild boar, water buffalo, bison and camelids (alpaca and llama). These all present meat hygiene and slaughter staff with new challenges due to physical and behavioural differences compared to traditional domestic livestock (cattle, sheep, goats, pigs and horses).
    [Show full text]
  • Cervid Mixed-Species Table That Was Included in the 2014 Cervid RC
    Appendix III. Cervid Mixed Species Attempts (Successful) Species Birds Ungulates Small Mammals Alces alces Trumpeter Swans Moose Axis axis Saurus Crane, Stanley Crane, Turkey, Sandhill Crane Sambar, Nilgai, Mouflon, Indian Rhino, Przewalski Horse, Sable, Gemsbok, Addax, Fallow Deer, Waterbuck, Persian Spotted Deer Goitered Gazelle, Reeves Muntjac, Blackbuck, Whitetailed deer Axis calamianensis Pronghorn, Bighorned Sheep Calamian Deer Axis kuhili Kuhl’s or Bawean Deer Axis porcinus Saurus Crane Sika, Sambar, Pere David's Deer, Wisent, Waterbuffalo, Muntjac Hog Deer Capreolus capreolus Western Roe Deer Cervus albirostris Urial, Markhor, Fallow Deer, MacNeil's Deer, Barbary Deer, Bactrian Wapiti, Wisent, Banteng, Sambar, Pere White-lipped Deer David's Deer, Sika Cervus alfredi Philipine Spotted Deer Cervus duvauceli Saurus Crane Mouflon, Goitered Gazelle, Axis Deer, Indian Rhino, Indian Muntjac, Sika, Nilgai, Sambar Barasingha Cervus elaphus Turkey, Roadrunner Sand Gazelle, Fallow Deer, White-lipped Deer, Axis Deer, Sika, Scimitar-horned Oryx, Addra Gazelle, Ankole, Red Deer or Elk Dromedary Camel, Bison, Pronghorn, Giraffe, Grant's Zebra, Wildebeest, Addax, Blesbok, Bontebok Cervus eldii Urial, Markhor, Sambar, Sika, Wisent, Waterbuffalo Burmese Brow-antlered Deer Cervus nippon Saurus Crane, Pheasant Mouflon, Urial, Markhor, Hog Deer, Sambar, Barasingha, Nilgai, Wisent, Pere David's Deer Sika 52 Cervus unicolor Mouflon, Urial, Markhor, Barasingha, Nilgai, Rusa, Sika, Indian Rhino Sambar Dama dama Rhea Llama, Tapirs European Fallow Deer
    [Show full text]
  • Prospects for Rewilding with Camelids
    Journal of Arid Environments 130 (2016) 54e61 Contents lists available at ScienceDirect Journal of Arid Environments journal homepage: www.elsevier.com/locate/jaridenv Prospects for rewilding with camelids Meredith Root-Bernstein a, b, *, Jens-Christian Svenning a a Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark b Institute for Ecology and Biodiversity, Santiago, Chile article info abstract Article history: The wild camelids wild Bactrian camel (Camelus ferus), guanaco (Lama guanicoe), and vicuna~ (Vicugna Received 12 August 2015 vicugna) as well as their domestic relatives llama (Lama glama), alpaca (Vicugna pacos), dromedary Received in revised form (Camelus dromedarius) and domestic Bactrian camel (Camelus bactrianus) may be good candidates for 20 November 2015 rewilding, either as proxy species for extinct camelids or other herbivores, or as reintroductions to their Accepted 23 March 2016 former ranges. Camels were among the first species recommended for Pleistocene rewilding. Camelids have been abundant and widely distributed since the mid-Cenozoic and were among the first species recommended for Pleistocene rewilding. They show a range of adaptations to dry and marginal habitats, keywords: Camelids and have been found in deserts, grasslands and savannas throughout paleohistory. Camelids have also Camel developed close relationships with pastoralist and farming cultures wherever they occur. We review the Guanaco evolutionary and paleoecological history of extinct and extant camelids, and then discuss their potential Llama ecological roles within rewilding projects for deserts, grasslands and savannas. The functional ecosystem Rewilding ecology of camelids has not been well researched, and we highlight functions that camelids are likely to Vicuna~ have, but which require further study.
    [Show full text]