Loss of Microsatellite Diversity and Low Effective Population Size in an Overexploited Population of New Zealand Snapper (Pagrus Auratus)

Total Page:16

File Type:pdf, Size:1020Kb

Loss of Microsatellite Diversity and Low Effective Population Size in an Overexploited Population of New Zealand Snapper (Pagrus Auratus) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus) Lorenz Hauser*†, Greg J. Adcock*‡, Peter J. Smith§, Julio H. Bernal Ramı´rez*¶, and Gary R. Carvalho* *Molecular Ecology and Fisheries Genetics Laboratory, Department of Biological Sciences, University of Hull, Hull HU6 7RX, United Kingdom; and §National Institute of Water and Atmospheric Research, P.O. Box 14901, Wellington, New Zealand Edited by John C. Avise, University of Georgia, Athens, GA, and approved June 27, 2002 (received for review April 23, 2002) Although the effects of overfishing on species diversity and abun- ered being in danger of losing genetic diversity (8), and so there dance are well documented, threats to the genetic diversity of appears to be little cause for concern from a genetic perspective. marine fish populations have so far been largely neglected. Indeed, On the other hand, the number of fish in a population (census there seems to be little cause for concern, as even ‘‘collapsed’’ population size, N) is often much larger than the genetically stocks usually consist of several million individuals, whereas pop- effective population size (Ne), which determines the genetic ulation genetics theory suggests that only very small populations properties of a population (12). The long-term evolutionary Ne suffer significant loss of genetic diversity. On the other hand, in is often orders of magnitude smaller than current population many marine species the genetically effective population size (Ne), sizes, probably because of historic population bottlenecks, ‘‘se- which determines the genetic properties of a population, may be lective sweeps,’’ or colonization histories (13). However, recent orders of magnitude smaller than the census population size (N). evidence suggests that even the short-term Ne without consid- Here, microsatellite analyses of a time series of archived scales eration of such historical events may be very much lower than demonstrated a significant decline in genetic diversity in a New census population numbers. Especially in marine organisms, Zealand snapper population during its exploitation history. Effec- high fecundity, a strong bias in reproductive success, large tive population sizes estimated both from the decline in heterozy- variations in year class strength, and size-dependent fecundity gosity and from temporal fluctuations in allele frequency were five may reduce the effective population size by several orders of orders of magnitude smaller than census population sizes from magnitude (14). Millions of individuals may therefore be equiv- fishery data. If such low Ne͞N ratios are commonplace in marine alent to an effective population size of only hundreds or thou- species, many exploited marine fish stocks may be in danger of sands. The notion that collapsed fish stocks may lose genetic losing genetic variability, potentially resulting in reduced adapt- diversity is thus not as far-fetched as is often assumed, despite ability, population persistence, and productivity. their large spawning stock biomasses. The demonstration of changes in genetic diversity in wild populations is often complicated by the lack of suitable popu- n 1883, Thomas Huxley, then president of the Royal Society of lations for comparison. Most commercially exploited species are ILondon, declared that ‘‘the cod fishery, the herring fishery and fished wherever they occur, and thus comparisons between probably all of the great sea fisheries are inexhaustible; that is to exploited and unexploited stocks are not possible. Temporal say that nothing we do seriously affects the numbers of fish’’ (1). comparisons based on archived material such as scales, otoliths, Since then, the status of the major fisheries and its perception by and bones, on the other hand (15), are usually restricted by a lack fisheries scientists has changed considerably. Several cod and of preexploitation samples, as routine sampling is usually initi- herring fisheries have had high profile ‘‘collapses’’ in recent ated long after the onset of the commercial fishery. Here, we decades (2), and in 1997, it was estimated that 60% of the major used a collection of scales of two New Zealand snapper (Pagrus marine fisheries were either fully exploited or overexploited (3). auratus) populations, dating back in one population to the Such high levels of exploitation not only affect the abundance of beginning of exploitation, to investigate the genetic effects of target species (4) but also change the physical (5) and trophic (6) reductions in stock biomass caused by commercial fishing. structure of marine ecosystems. Among attempts to ameliorate The history of the snapper fishery in the north of New Zealand such immediate far-reaching ecological effects of fishing, there is typical for many other fisheries in the world (16, 17): yields of is usually little consideration for more long-term impacts, such the commercial fishery in Hauraki Gulf (Fig. 1), which devel- as changes in the genetic constitution of exploited species. oped in the mid 1800s, increased slowly up to the 1970s, when the Although there has been some interest in selective changes in introduction of pair trawls raised catches to 12,000 t (Fig. 2). By exploited fish populations (7), their genetic diversity is generally the mid-1980s annual catches had declined to 6,000 t, and stocks considered to be unaffected by commercial fishing, in an attitude showed signs of overfishing. During this period, the spawning that echoes Huxley’s statement of more than a century ago. stock biomass had decreased from an estimated 280,000 t to Indeed, population genetics theory suggests that genetic diver- 37,000 t, a decline by 87%, although population abundance never sity is significantly reduced only in very small populations (8), fell below 37 million individuals (17). Because of the importance and so even ‘‘collapsed’’ stocks may consist of far too many fish of the fishery and the drastic decrease in stock abundance, to show declines in genetic diversity measurable with feasible research on snapper biology started soon after World War II, not sample sizes (9). For example, the spawning stock biomass of the Newfoundland cod, whose fishery was so famously closed in 1992, remained at 22,000 t [ref. 10; 1 t (tonne) ϭ 1,000 kg], This paper was submitted directly (Track II) to the PNAS office. leaving several million fish in the population. Similarly, even †To whom reprint requests should be sent at the present address: School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020. E-mail: lhauser@ after stock crashes and effective cessation of dependent fisheries, u.washington.edu. the stock biomass of many small pelagic species is generally still ‡Present address: Department of Zoology, University of Melbourne, Melbourne 3010, several tens of thousands of tonnes, and thus populations typically Australia. consist of tens of millions of fish (11). These population sizes are ¶Present address: Asociacion para la Defensa de la Reserva de la Macarena, Calle 29 many orders of magnitude higher than those commonly consid- No. 6-94, Piso 8, Bogota´, Colombia. 11742–11747 ͉ PNAS ͉ September 3, 2002 ͉ vol. 99 ͉ no. 18 www.pnas.org͞cgi͞doi͞10.1073͞pnas.172242899 Downloaded by guest on September 26, 2021 assessment͞plenary͞SNA࿝2&7࿝FAR࿝Apr2002.pdf). There is no, or very little, exchange between the two snapper populations, which thus experienced independent exploitation and demo- graphic histories. Allozyme variation (19), growth rates (20), and microsatellite polymorphism (21) show that the Hauraki Gulf population is part of a larger stock along the northeast coast of the North Island, whereas the Tasman Bay fish are differentiated from the Hauraki Gulf stock and appear to be isolated from other populations. A comparison between the two populations in Hauraki Gulf and Tasman Bay therefore allowed an assess- ment of the genetic effects of different exploitation histories and population sizes. Materials and Methods Molecular Work. Dried scales from 1950 to 1986 were obtained from the Ministry of Fisheries, Wellington, New Zealand, where they had been stored individually at room temperature in paper envelopes. DNA from scales was extracted in a dedicated ancient DNA laboratory by using a previously published protocol (22). Additional samples were obtained from fresh material collected in 1998, and DNA was extracted by using standard methods. Fig. 1. Map of New Zealand showing the sampling sites. DNA extracts were screened at seven microsatellite loci [Pma1, Pma2, Pma5 (23); GA2A, GA2B, GT2, GT4 (22)] on an ALF- express automated sequencer (Amersham Pharmacia Biotech). only in the heavily fished northern populations, but also in Sample sizes are presented in Table 1. hitherto less exploited stocks in the south, such as Tasman Bay in the north of the South Island. There are therefore time series Statistical Analyses. Multilocus genotypes were tested for devia- of scale samples from Tasman Bay, beginning in 1950 just after tions from Hardy–Weinberg equilibrium and for linkage dis- the commencement of the fishery, when spawning stock biomass equilibrium by using Fisher’s exact test in GENEPOP version 3.2 was essentially at natural levels, and covering the entire exploi- (24). Genetic diversity was quantified by using Nei’s (25) unbi- tation history of the stock, with a reduction in biomass by 85% ased heterozygosity (H ) and the mean number of alleles per and in numbers by 75%, and an estimated minimum popula- e locus (Na). Because the number of alleles strongly depends on tion size of 3.3 million fish in 1985 (refs. 16 and 18; Fig. 2; ref. ͞ ͞ ͞ the sample size, 30 individuals from each sample were resampled 18 is available at www.fish.govt.nz sustainability research 1,000 times [by using POPTOOLS (add-in for Microsoft Excel, written by Greg Wood, Commonwealth Scientific and Industrial Research Organization, Australia, available at www.cse.csiro. au͞CDG͞poptools͞)], so not only standardizing the mean (sam- pling without replacement), but also providing estimates of the sampling variance (95% confidence limits, obtained with re- placement).
Recommended publications
  • Functional Benefits of Predator Species Diversity Depend on Prey Identity
    Ecological Entomology (2005) 30, 497–501 Functional benefits of predator species diversity depend on prey identity A. WILBY1 , S. C. VILLAREAL2 ,L.P.LAN3 ,K.L.HEONG2 and 1 M. B. THOMAS 1Department of Agricultural Sciences and NERC Centre for Population Biology, Imperial College London, U.K., 2International Rice Research Institute, Metro Manila, Philippines and 3Institute of Agricultural Sciences of South Vietnam, Ho Chi Minh City, Vietnam Abstract. 1. Determining the functional significance of species diversity in nat- ural enemy assemblages is a key step towards prediction of the likely impact of biodiversity loss on natural pest control processes. While the biological control literature contains examples in which increased natural enemy diversity hinders pest control, other studies have highlighted mechanisms where pest suppression is promoted by increased enemy diversity. 2. This study aimed to test whether increased predator species diversity results in higher rates of predation on two key, but contrasting, insect pest species commonly found in the rice ecosystems of south-east Asia. 3. Glasshouse experiments were undertaken in which four life stages of a planthopper (Nilaparvata lugens) and a moth (Marasmia patnalis) were caged with single or three-species combinations of generalist predators. 4. Generally, predation rates of the three-species assemblages exceeded expec- tation when attacking M. patnalis, but not when attacking N. lugens. In addition, a positive effect of increased predator species richness on overall predation rate was found with M. patnalis but not with N. lugens. 5. The results are consistent with theoretical predictions that morphological and behavioural differentiation among prey life stages promotes functional com- plementarity among predator species.
    [Show full text]
  • Species Richness, Species–Area Curves and Simpson's Paradox
    Evolutionary Ecology Research, 2000, 2: 791–802 Species richness, species–area curves and Simpson’s paradox Samuel M. Scheiner,1* Stephen B. Cox,2 Michael Willig,2 Gary G. Mittelbach,3 Craig Osenberg4 and Michael Kaspari5 1Department of Life Sciences (2352), Arizona State University West, P.O. Box 37100, Phoenix, AZ 85069, 2Program in Ecology and Conservation Biology, Department of Biological Sciences and The Museum, Texas Tech University, Lubbock, TX 79409, 3W.K. Kellogg Biological Station, 3700 E. Gull Lake Drive, Michigan State University, Hickory Corners, MI 49060, 4Department of Zoology, University of Florida, Gainesville, FL 32611 and 5Department of Zoology, University of Oklahoma, Norman, OK 73019, USA ABSTRACT A key issue in ecology is how patterns of species diversity differ as a function of scale. The scaling function is the species–area curve. The form of the species–area curve results from patterns of environmental heterogeneity and species dispersal, and may be system-specific. A central concern is how, for a given set of species, the species–area curve varies with respect to a third variable, such as latitude or productivity. Critical is whether the relationship is scale-invariant (i.e. the species–area curves for different levels of the third variable are parallel), rank-invariant (i.e. the curves are non-parallel, but non-crossing within the scales of interest) or neither, in which case the qualitative relationship is scale-dependent. This recognition is critical for the development and testing of theories explaining patterns of species richness because different theories have mechanistic bases at different scales of action.
    [Show full text]
  • European Gradients of Resilience in the Face of Climate Extremes
    EUROPEAN GRADIENTS OF RESILIENCE IN THE FACE OF CLIMATE EXTREMES POLICY BRIEF Field site in Belgium with rainout shelters deployed in 2013 ©Sigi Berwaers This policy brief is based on the results Extreme weather events and the presence of invasive species can act as of the BiodivERsA-funded project pressures threatening biodiversity, resilience and ecosystem services of semi- ‘SIGNAL’ addressing the interaction of three major research areas, combined natural grasslands and drive them beyond thresholds of system integrity in ecology for the first time: biodiversity (tipping points and regime shifts). On the other hand, biodiversity itself may experiments, climate change research, and invasion research. The project made use buffer ecosystem functioning and services against change. Potential stabilising of coordinated experiments in different mechanisms include species richness, presence of key species such as legumes climates across Europe, thereby increasing and within-species diversity. These potential buffers can be promoted by the scope and relevance of the results. conservation management and policy adjustments. K EY POLICY RECOMMENDATIONS • Local biodiversity should be actively stimulated or preserved across European grasslands in order to increase the stability of ecosystem service provisioning, which is especially relevant as climate extremes are expected to become more frequent and intense. • Adjustment of mowing frequency and cutting height can help maintain or increase biodiversity. • More explicit consideration of within-species diversity is warranted, as this component of biodiversity can contribute to stabilising ecosystem functioning in the face of climate extremes. • Ecosystem responses to climate extremes of similar magnitude can vary significantly between climates and regions, suggesting that targeted policy requires tailor-made impact predictions.
    [Show full text]
  • "Species Richness: Small Scale". In: Encyclopedia of Life Sciences (ELS)
    Species Richness: Small Advanced article Scale Article Contents . Introduction Rebecca L Brown, Eastern Washington University, Cheney, Washington, USA . Factors that Affect Species Richness . Factors Affected by Species Richness Lee Anne Jacobs, University of North Carolina, Chapel Hill, North Carolina, USA . Conclusion Robert K Peet, University of North Carolina, Chapel Hill, North Carolina, USA doi: 10.1002/9780470015902.a0020488 Species richness, defined as the number of species per unit area, is perhaps the simplest measure of biodiversity. Understanding the factors that affect and are affected by small- scale species richness is fundamental to community ecology. Introduction diversity indices of Simpson and Shannon incorporate species abundances in addition to species richness and are The ability to measure biodiversity is critically important, intended to reflect the likelihood that two individuals taken given the soaring rates of species extinction and human at random are of the same species. However, they tend to alteration of natural habitats. Perhaps the simplest and de-emphasize uncommon species. most frequently used measure of biological diversity is Species richness measures are typically separated into species richness, the number of species per unit area. A vast measures of a, b and g diversity (Whittaker, 1972). a Di- amount of ecological research has been undertaken using versity (also referred to as local or site diversity) is nearly species richness as a measure to understand what affects, synonymous with small-scale species richness; it is meas- and what is affected by, biodiversity. At the small scale, ured at the local scale and consists of a count of species species richness is generally used as a measure of diversity within a relatively homogeneous area.
    [Show full text]
  • Plant Species Diversity, Plant Biomass and Responses of the Soil Community on Abandoned Land Across Europe: Idiosyncracy Or Above-Belowground Time Lags
    Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags Hedlund, Katarina; Regina, IS; Van der Putten, WH; Leps, J; Diaz, T; Korthals, GW; Lavorel, S; Brown, VK; Gormsen, Dagmar; Mortimer, SR; Barrueco, CR; Roy, J; Smilauer, P; Smilauerova, M; Van Dijk, C Published in: Oikos DOI: 10.1034/j.1600-0706.2003.12511.x 2003 Link to publication Citation for published version (APA): Hedlund, K., Regina, IS., Van der Putten, WH., Leps, J., Diaz, T., Korthals, GW., Lavorel, S., Brown, VK., Gormsen, D., Mortimer, SR., Barrueco, CR., Roy, J., Smilauer, P., Smilauerova, M., & Van Dijk, C. (2003). Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos, 103(1), 45-58. https://doi.org/10.1034/j.1600- 0706.2003.12511.x Total number of authors: 15 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Effect of Dietary Concentrate to Forage Ratio on Growth Performance
    Effect of dietary concentrate to forage ratio on growth performance, rumen fermentation and bacterial diversity of Tibetan sheep under barn feeding on the Qinghai-Tibetan plateau Hongjin Liu1,2,3,*, Tianwei Xu1,2,*, Shixiao Xu1, Li Ma1,2,3, Xueping Han1,3,4, Xungang Wang1,2,3, Xiaoling Zhang1,2,3, Linyong Hu1,2, Na Zhao1,2, Yongwei Chen4, Li Pi1 and Xinquan Zhao1,2 1 Northwest Institue of Plateau Biology, Chinese Academy of Science, Xining, China 2 Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, China 3 University of Chinense Academy of Sciences, Beijing, China 4 Technology Extension Service of Animal Husbandry of Qinghai, Xining, China * These authors contributed equally to this work. ABSTRACT This study aimed to research the effects of different dietary concentrate to forage (C:F) ratio on growth performance, rumen fermentation and bacteria diversity of barn feeding Tibetan sheep. The experiment contains fiver treatments (HS1, HS2 HS3, HS4 and HS5; n D 8, respectively) based on dietary C:F ratios 0:100, 15:85, 30:70, 45:55, and 60:40, respectively. The ruminal bacterial community structure was investigated through high-throughput sequencing of 16S rRNA genes in V4 hypervariable region. The results showed that increasing dietary concentrate feed level from 0% to 60% exerted a positive effect on DMI, BW gain, gain rate and feed conversation ratio (FCR) in Tibetan sheep. The increases dietary concentrate feed level elevatedNH3-N, propionate and valerate concentrations, whereas, reduced molar ratio of acetate to propionate (A/P ratio) (P < 0:05). For rumen bacterial diversity, increases in dietary concentrate Submitted 24 February 2019 content contributed to lower alpha diversity indexes including Shannon wiener, Chao1 Accepted 11 July 2019 and observed species, meanwhile, significantly increased the abundances of the phylum Published 5 August 2019 Bacteroidetes and the genus Prevotella_1 (P < 0:05).
    [Show full text]
  • Community Diversity
    Community Diversity Topics What is biodiversity and why is it important? What are the major drivers of species richness? Habitat heterogeneity Disturbance Species energy theory Metobolic energy theory Dynamic equilibrium hypothesis (interactions among disturbance and energy) Resource ratio theory How does biodiversity influence ecosystem function? Biodiversity and ecosystem function hypothesis Integration of biodiversity theory How might the drivers of species richness and hence levels of species richness differ among biomes? Community Diversity Defined Biodiversity Merriam-Webster - the existence of many different kinds of plants and animals in an environment. Wikipedia - the degree of variation of life forms within a given species, ecosystem, biome, or an entire planet. U.S. Congress Office of Technology Assessment - the variety and variability among living organisms and the ecological complexes in which they occur. Diversity can be defined as the number of different items and their relative frequency. For biological diversity, these items are organized at many levels, ranging from complete ecosystems to the chemical structures that are the molecular basis of heredity. Thus, the term encompasses different ecosystems, species, genes, and their relative abundance." Community Diversity Defined Species richness - Species evenness - Species diversity - Community Diversity Defined Species richness - number of species present in the community (without regard for their abundance). Species evenness - relative abundance of the species that are
    [Show full text]
  • Extending Species-Area Relationships (SAR) to Diversity-Area Relationships (DAR)©
    Extending species-area relationships (SAR) to diversity-area relationships (DAR)© Zhanshan (Sam) Ma Computational Biology and Medical Ecology Lab State Key Lab of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223, China [email protected] Abstract Aim: I extend the traditional SAR, which has achieved status of ecological law and plays a critical role in global biodiversity assessment, to the general (alpha- or beta-diversity in Hill numbers) diversity area relationship (DAR). The extension was motivated to remedy the limitation of traditional SAR that only address one aspect of biodiversity scaling—species richness scaling over space. Innovation: The extension was made possible by the fact that all Hill numbers are in units of species (referred to as the effective number of species or as species equivalents), and I postulated that Hill numbers should follow the same or similar pattern of SAR. I selected three DAR models, the traditional power law (PL), PLEC (PL with exponential cutoff) and PLIEC (PL with inverse exponential cutoff). I defined three new concepts and derived their quantifications: (i) DAR profile—z-q series where z is the PL scaling parameter at different diversity order (q); (ii) PDO (pair-wise diversity overlap) profile—g-q series where g is the PDO corresponding to q; (iii) MAD (maximal accrual diversity) profile—Dmax-q series where Dmax is the MAD corresponding to q. Furthermore, the PDO-g is quantified based on the self- similarity property of the PL model, and Dmax can be estimated from the PLEC parameters. The three profiles constitute a novel DAR approach to biodiversity scaling.
    [Show full text]
  • Biochemical and Microbial Biomarkers Mediating Feed Efficiency in Cattle
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2018 Biochemical and Microbial Biomarkers Mediating Feed Efficiency in Cattle Brooke Ashley Clemmons University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Clemmons, Brooke Ashley, "Biochemical and Microbial Biomarkers Mediating Feed Efficiency in Cattle. " Master's Thesis, University of Tennessee, 2018. https://trace.tennessee.edu/utk_gradthes/5032 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Brooke Ashley Clemmons entitled "Biochemical and Microbial Biomarkers Mediating Feed Efficiency in Cattle." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Animal Science. Phillip R. Myer, Major Professor We have read this thesis and recommend its acceptance: Dallas R. Donohoe, Brynn H. Voy Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Biochemical and Microbial Biomarkers Mediating Feed Efficiency in Cattle A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Brooke Ashley Clemmons May 2018 DEDICATION This thesis would not have been possible without the support of my wonderful, amazing husband, Josh.
    [Show full text]
  • A Mechanistic Verification of the Competitive Exclusion Principle
    A mechanistic verification of the competitive exclusion principle Lev V. Kalmykov1,3 & Vyacheslav L. Kalmykov2,3* 1Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia; 2Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia; 3Pushchino State Institute of Natural Sciences (the former Pushchino State University), Pushchino, Moscow Region, 142290 Russia. *e-mail: [email protected] Abstract Biodiversity conservation becoming increasingly urgent. It is important to find mechanisms of competitive coexistence of species with different fitness in especially difficult circumstances - on one limiting resource, in isolated stable uniform habitat, without any trade-offs and cooperative interactions. Here we show a mechanism of competitive coexistence based on a soliton-like behaviour of population waves. We have modelled it by the logical axiomatic deterministic individual-based cellular automata method. Our mechanistic models of population and ecosystem dynamics are of white-box type and so they provide direct insight into mechanisms under study. The mechanism provides indefinite coexistence of two, three and four competing species. This mechanism violates the known formulations of the competitive exclusion principle. As a consequence, we have proposed a fully mechanistic and most stringent formulation of the principle. Keywords: population dynamics; biodiversity paradox; cellular automata; interspecific competition; population waves. Introduction Background. Up to now, it is not clear why are there so many superficially similar species existing together1,2. The competitive exclusion principle (also known as Gause’s principle, Gause’s Rule, Gause’s Law, Gause’s Hypothesis, Volterra-Gause Principle, Grinnell’s Axiom, and Volterra-Lotka Law)3 postulates that species competing for the same limiting resource in one homogeneous habitat cannot coexist4,5.
    [Show full text]
  • Relation Between Herbivore Abundance, Herbivore Diversity and Vegetation Diversity
    Relation between herbivore abundance, herbivore diversity and vegetation diversity Andreas Lundgren Andreas Lundgren Degree Thesis in Biology 15 ECTS Bachelor’s Level Report passed: 2018-05-01 Supervisor: Bent Christensen Abstract Biodiversity has been described as an important factor for an ecosystem’s ability to maintain ecosystem functions. This report aim to investigate the relationship between herbivore abundance and the diversity of habitat vegetation, as well as the relationship between herbivore species diversity and diversity of vegetation, in an area that was considered to be inhabited by more herbivores than the vegetation could support. The study took place in the game and wilderness reserve Limpopo Lipadi in south-eastern Botswana. The method used was game counting through game drive observations and waterhole observations within different vegetation types. The results of regression analyses showed a positive relation between herbivore species diversity and the diversity of the vegetation, as well as a positive relation between herbivore abundance and the diversity of the vegetation. The results from regression analyses are in line with previous studies, but t-tests were unable to prove a significant difference in herbivore diversity, herbivore abundance and vegetative diversity between the different vegetation types. This contradicts ecological literature and may be caused by the area being within an extreme environment with high fluctuations of temperature and precipitation and the area being inhabited by more herbivores
    [Show full text]
  • Species Diversity Report George Washington National Forest Draft EIS April 2011
    Appendix F - Species Diversity Report George Washington National Forest Draft EIS April 2011 U.S. Department of Agriculture Forest Service Southern Region Species Diversity Report George Washington National Forest April 2011 Appendix F - Species Diversity Report George Washington National Forest Draft EIS April 2011 Table of Contents Table of Contents ........................................................................................................................... i 1.0 Introduction ............................................................................................................................ 5 2.0 Species Diversity..................................................................................................................... 5 2.1 Ecosystem Context for Species ............................................................................................ 5 2.2 Identification and Screening of Species ............................................................................... 6 3.0 Threatened and Endangered Species ................................................................................... 7 3.1 Threatened and Endangered Species List ............................................................................ 7 3.2 Threatened and Endangered Species Descriptions and Plan Components .......................... 8 3.2.1 Indiana Bat ........................................................................................................................ 8 3.2.2 Virginia Big-Eared Bat ..................................................................................................
    [Show full text]