7. Overview of Modern QMC Algorithms

Total Page:16

File Type:pdf, Size:1020Kb

7. Overview of Modern QMC Algorithms 7. Overview of modern QMC algorithms Friday, 9 July 2010 Modern Monte Carlo algorithms • Which system sizes can be studied? temperature local updates modern algorithms 3D Tc 16’000 spins 16’000’000 spins 0.1 J 200 spins 1’000’000 spins 0.005 J ––– 50’000 spins 3D Tc 32 bosons 1’000’000 bosons 0.1 t 32 bosons 10’000 bosons Friday, 9 July 2010 When to use SSE? • For quantum magnets • loop cluster algorithm if there is spin inversion symmetry • directed loops if there is no spin inversion symmetry • For hardcore bosons: • loop cluster algorithm if there is particle-hole symmetry • directed loops if there is no particle-hole symmetry • Which models? • 2-site interactions are rather straightforward • multi-site interactions require more thought Friday, 9 July 2010 When to use path integrals? • For Bose-Hubbard models • Use the worm algorithm in continuous time path integrals • This expands only in the hopping t and not the much larger repulsion U • For non-local in time actions • Appear in dissipative (Caldeira-Legget type) models, coupling to phonons, DMFT, ... • Cluster algorithms are again possible in case of spin-inversion symmetry Friday, 9 July 2010 8. Wang-Landau sampling and optimized ensembles for quantum systems Friday, 9 July 2010 First order phase transitions Tunneling out of meta-stable state is suppressed exponentially liquid gas gas liquid τ ∝exp(−cLd −1 /T) P Critical slowing down solved by cluster updates liquid How can we tunnel critical ? point out of metastable state? gas T Friday, 9 July 2010 First order phase transitions • Tunneling problem at a first order phase transition is solved by changing the ensemble to create a flat energy landscape • Multicanonical sampling (Berg and Neuhaus, Phys. Rev. Lett. 1992) • Wang-Landau sampling (Wang and Landau, Phys. Rev. Lett. 2001) • Quantum version (MT, Wessel and Alet, Phys. Rev. Lett. 2003) • Optimized ensembles (Trebst, Huse and MT, Phys. Rev. E 2004) ? ? liquid solid Friday, 9 July 2010 Quantum systems Z e−Ec / kBT (E)e−E / kBT Classical: = ∑ = ∑ρ • c E • Quantum: ρ(E) is not accessible • formulation in terms of high-temperature series ∞ β n ∞ β n Z = Tr(e−βH ) = ∑ Tr(−H)n = ∑ g(n) n= 0 n! n= 0 n! • or perturbation series ∞ Z = Tre−βH = Tre−β ( H 0 +λV ) = ∑λn g(n) n= 0 • Flat histogram, parallel tempering, histogram reweighting, etc done in order n of series expansion instead of energy Friday, 9 July 2010 Stochastic Series Expansion (SSE) • based on high temperature expansion, (A. Sandvik, 1991) ∞ β n −β H ⎡ n ⎤ Z = Tr(e ) = ∑ Tr ⎣(−H) ⎦ n=0 n! ∞ β n = α − H α α − H α ⋅⋅⋅ α − H α ∑ n! ∑ 1 2 2 3 n 1 n=0 α1 ,...,αn • also has a graphical representation in terms of world lines H b2 Hb 1 H b1 • is very similar to path integrals • perturb in all terms of the Hamiltonian, not just off-diagonal terms Friday, 9 July 2010 Wang-Landau sampling for quantum systems ∞ n −βH β n Z = Tr(e ) = ∑ Tr ⎣⎡(−H ) ⎦⎤ • SSE: n=0 n! ∞ β n = ∑ ∑ α1 − H α 2 α 2 − H α 3 ⋅⋅⋅ α n − H α1 n=0 n! α1 ,...,αn ∞ β n ≡ ∑ g(n) n=0 n! • compare to classical Monte Carlo: Z = ∑e−Ec / kBT = ∑ρ(E)e−E / kBT c E • flat histogram obtained by changing the ensemble: • classically: E 1 e−β c → ρ(E) β n 1 • quantum: → n! g(n) Friday, 9 July 2010 Wang-Landau updates in SSE • We want flat histogram in order n • Use the Wang-Landau algorithm to get Λ Λ (Λ − n)!β n Λ Z = ,,,β n g(n) from Z = α (−H ) α ∑ ∑∑ ∑ Λ! ∏ bi n= 0 n= 0 α (b1 ,...,bΛ ) i=1 • Small change in acceptance rates for diagonal updates ⎛ d ⎞ ⎛ d ⎞ d βNbonds α H(i, j ) α Wang−Landau Nbonds α H(i, j ) α g(n) P[1→ H(i, j )] = min⎜1 , ⎟ ⎯ ⎯ ⎯ ⎯⎯ → min⎜1 , ⎟ ⎝ Λ − n ⎠ ⎝ Λ − n g(n +1)⎠ ⎛ Λ − n +1 ⎞ ⎛ Λ − n +1 g(n) ⎞ P[H d →1] = min⎜1 , ⎟ ⎯Wang ⎯ ⎯-Landau ⎯⎯ → min⎜1 , ⎟ (i, j ) ⎜ N H d ⎟ ⎜ N H d g(n 1)⎟ ⎝ β bonds α (i, j ) α ⎠ ⎝ bonds α (i, j ) α − ⎠ • Loop update does not change n and is thus unchanged! • Cuto' Λ limits temperatures to β < Λ / E0 Friday, 9 July 2010 The first test • L=10 site Heisenberg chain with Λ = 250 temperature cutoff due to finite L Friday, 9 July 2010 Wang-Landau sampling for quantum systems • Example: 3D quantum Heisenberg antiferromagnet 0.8 1.0 0.8 0.6 0.6 0.4 0.4 0.2 0.0 0.0 0.4 0.8 1.2 1.6 2.0 0.2 T/J 0.0 0.4 0.8 1.2 1.6 2.0 T/J Friday, 9 July 2010 Speedup at first order phase transition • Greatly reduced tunneling times at free energy barriers • Example: stripe rotation in 2D hard-core bosons 108 † H = −t∑(ai a j + h.c.) + V2 ∑nin j i, j i, j 106 conventional SSE 4 10 av 102 Wang−Landau sampling 100 0.0 0.5 1.0 1.5 2.0 T / t Friday, 9 July 2010 Perturbation expansion • Instead of temperature a coupling constant can be changed • Based on finite temperature perturbation expansion nλ (i) with H = H0 + λV = ∑λ Hi i ∞ (−β)n n Z = Tr(e−βH ) = α (−H ) α λnλ (b1 ,...,bn ) ∑ n! ∑ ∑ ∏ bi n= 0 α (b1 ,...,bn ) i=1 Λ (Λ − n)!β n Λ ≈ α (−H ) α λnλ (b1 ,...,bΛ ) ∑∑ ∑ Λ! ∏ bi n= 0 α (b1 ,...,bΛ ) i=1 Λ nλ = λ g(nλ ) ∑ nλ (b1,...,bn ) counts # of λ terms nλ = 0 Flat histogram in order n of perturbation expansion • λ Friday, 9 July 2010 Perturbation series by Wang-Landau • We want flat histogram in order nλ • Use the Wang-Landau algorithm to get Λ Λ n Λ n (Λ − n)!β Z = ,,,λ λ g(n ) from Z = α (−H ) α λnλ (b1 ,...,bΛ ) ∑ λ ∑∑ ∑ Λ! ∏ bi nλ = 0 n= 0 α (b1 ,...,bΛ ) i=1 • Small change in acceptance rates for diagonal updates ⎛ d ⎞ ⎛ d ⎞ d βNbonds α H(i, j ) α Wang−Landau βNbonds α H(i, j ) α g(nλ ) P[1→ H(i, j )] = min⎜1 , ⎟ ⎯ ⎯ ⎯ ⎯⎯ → min⎜1 , ⎟ ⎝ Λ − n ⎠ ⎝ Λ − n g(nλ + Δnλ )⎠ ⎛ Λ − n +1 ⎞ ⎛ Λ − n +1 g(n ) ⎞ P[H d →1] = min⎜1 , ⎟ ⎯Wang ⎯ ⎯-Landau ⎯⎯ → min⎜1 , λ ⎟ (i, j ) ⎜ N H d ⎟ ⎜ N H d g(n n )⎟ ⎝ β bonds α (i, j ) α ⎠ ⎝ β bonds α (i, j ) α λ − Δ λ ⎠ • Loop update does not change n and is thus unchanged! • Cuto' Λ limits value of λ for which the series converges Friday, 9 July 2010 The antiferromagnetic bilayer J⊥ J J >> J : long range order J << J⊥: spin gap, no long range order ⊥ Quantum phase transition at J⊥ / J ≈ 2.524(2) Spin gap vanishes Magnetic order vanishes Universal properties Friday, 9 July 2010 Quantum phase transition • Quantum phase transition in bilayer quantum Heisenberg antiferromagnet 2.0 1.5 1.0 0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 J/Jʼ Friday, 9 July 2010 Summary • Extension of Wang-Landau sampling to quantum systems • Stochastically evaluate series expansion coefficients ∞ β n • High-temperature series Z = ∑ g(n) n= 0 n! ∞ Perturbation series nλ • Z = ∑λ g(nλ ) nλ = 0 • Features • Flat histogram in the expansion order • Allows calculation of free energy • Like classical systems, allows tunneling through free energy barriers • Optimized ensembles are also possible Friday, 9 July 2010 9. The negative sign problem in quantum Monte Carlo Friday, 9 July 2010 Quantum Monte Carlo • Not as easy as classical Monte Carlo Z = ∑e−Ec / kBT c • Calculating the eigenvalues Ec is equivalent to solving the problem • Need to find a mapping of the quantum partition function to a classical problem −βH Z = Tre ≡ ∑ pc c • “Negative sign” problem if some pc < 0 Friday, 9 July 2010 The negative sign problem • In mapping of quantum to classical system =Tr −βH = Z e ! pi i • there is a “sign problem” if some of the pi < 0 • Appears e.g. in simulation of electrons when two electrons exchange places (Pauli principle) |i1> |i4> |i3> |i2> |i1> Friday, 9 July 2010 The negative sign problem • Sample with respect to absolute values of the weights A sgn p p p ∑ i i i ∑ i A ⋅ sign A = A p p = i i ≡ p ∑ i i ∑ i sign i i ∑sgn pi pi ∑ pi p i i • Exponentially growing cancellation in the sign ! pi = i = = −βV (f−f|p|) !sign" Z/Z|p| e !i |pi| • Exponential growth of errors − ∆sign ! sign2 sign 2 eβV (f f|p|) = ! "−! " sign √M sign ≈ √M ! " ! " • NP-hard problem (no general solution) [Troyer and Wiese, PRL 2005] Friday, 9 July 2010 Is the sign problem exponentially hard? • The sign problem is basis-dependent • Diagonalize the Hamiltonian matrix A = Tr[Aexp(!"H)] Tr[exp(!"H)] = $ i Ai i exp(!"#i ) $exp(!"#i ) i i • All weights are positive • But this is an exponentially hard problem since dim(H)=2N ! • Good news: the sign problem is basis-dependent! • But: the sign problem is still not solved • Despite decades of attempts • Reminiscent of the NP-hard problems • No proof that they are exponentially hard • No polynomial solution either Friday, 9 July 2010 What is a solution of the sign problem? • Consider a fermionic quantum system with a sign problem (some pi < 0 A = Tr[Aexp(−βH )] Tr[exp(−βH )] = ∑Ai pi ∑ pi i i • Where the sampling of the bosonic system with respect to |pi| scales polynomially T ∝ε−2N nβ m • A solution of the sign problem is defined as an algorithm that can calculate the average with respect to pi also in polynomial time • Note that changing basis to make all pi ≥ 0 might not be enough: the algorithm might still exhibit exponential scaling Friday, 9 July 2010 Complexity of decision problems • Partial hierarchy of decision problems • Undecidable (“This sentence is false”) • Partially decidable (halting problem of Turing machines) • EXPSPACE • Exponential space and time complexity: diagonalization of Hamiltonian • PSPACE • Exponential time, polynomial space complexity: Monte Carlo • NP • Polynomial complexity on non-deterministic machine • Traveling salesman problem • 3D Ising spin glass • P • Polynomial complexity on Turing machine Friday, 9 July 2010 Complexity of decision problems • Some problems are harder than others: • Complexity class P • Can be solved in polynomial time on a Turing machine • Eulerian circuit problem • Minimum spanning Tree (decision version) • Detecting primality • Complexity class NP • Polynomial complexity using non-deterministic algorithms • Hamiltonian cirlce problem • Traveling salesman problem (decision version) • Factorization of integers • 3D spin glasses Friday, 9 July 2010 The complexity class P • The Eulerian circuit problem • Seven bridges in Königsberg (now Kaliningrad) crossed the river Pregel • Can we do a roundtrip by crossing each bridge exactly once? • Is there a closed walk on the graph going through each edge exactly once? • Looks like an expensive task by testing all possible paths.
Recommended publications
  • Week 1: an Overview of Circuit Complexity 1 Welcome 2
    Topics in Circuit Complexity (CS354, Fall’11) Week 1: An Overview of Circuit Complexity Lecture Notes for 9/27 and 9/29 Ryan Williams 1 Welcome The area of circuit complexity has a long history, starting in the 1940’s. It is full of open problems and frontiers that seem insurmountable, yet the literature on circuit complexity is fairly large. There is much that we do know, although it is scattered across several textbooks and academic papers. I think now is a good time to look again at circuit complexity with fresh eyes, and try to see what can be done. 2 Preliminaries An n-bit Boolean function has domain f0; 1gn and co-domain f0; 1g. At a high level, the basic question asked in circuit complexity is: given a collection of “simple functions” and a target Boolean function f, how efficiently can f be computed (on all inputs) using the simple functions? Of course, efficiency can be measured in many ways. The most natural measure is that of the “size” of computation: how many copies of these simple functions are necessary to compute f? Let B be a set of Boolean functions, which we call a basis set. The fan-in of a function g 2 B is the number of inputs that g takes. (Typical choices are fan-in 2, or unbounded fan-in, meaning that g can take any number of inputs.) We define a circuit C with n inputs and size s over a basis B, as follows. C consists of a directed acyclic graph (DAG) of s + n + 2 nodes, with n sources and one sink (the sth node in some fixed topological order on the nodes).
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • Glossary of Complexity Classes
    App endix A Glossary of Complexity Classes Summary This glossary includes selfcontained denitions of most complexity classes mentioned in the b o ok Needless to say the glossary oers a very minimal discussion of these classes and the reader is re ferred to the main text for further discussion The items are organized by topics rather than by alphab etic order Sp ecically the glossary is partitioned into two parts dealing separately with complexity classes that are dened in terms of algorithms and their resources ie time and space complexity of Turing machines and complexity classes de ned in terms of nonuniform circuits and referring to their size and depth The algorithmic classes include timecomplexity based classes such as P NP coNP BPP RP coRP PH E EXP and NEXP and the space complexity classes L NL RL and P S P AC E The non k uniform classes include the circuit classes P p oly as well as NC and k AC Denitions and basic results regarding many other complexity classes are available at the constantly evolving Complexity Zoo A Preliminaries Complexity classes are sets of computational problems where each class contains problems that can b e solved with sp ecic computational resources To dene a complexity class one sp ecies a mo del of computation a complexity measure like time or space which is always measured as a function of the input length and a b ound on the complexity of problems in the class We follow the tradition of fo cusing on decision problems but refer to these problems using the terminology of promise problems
    [Show full text]
  • Interactive Oracle Proofs with Constant Rate and Query Complexity∗†
    Interactive Oracle Proofs with Constant Rate and Query Complexity∗† Eli Ben-Sasson1, Alessandro Chiesa2, Ariel Gabizon‡3, Michael Riabzev4, and Nicholas Spooner5 1 Technion, Haifa, Israel [email protected] 2 University of California, Berkeley, CA, USA [email protected] 3 Zerocoin Electronic Coin Company (Zcash), Boulder, CO, USA [email protected] 4 Technion, Haifa, Israel [email protected] 5 University of Toronto, Toronto, Canada [email protected] Abstract We study interactive oracle proofs (IOPs) [7, 43], which combine aspects of probabilistically check- able proofs (PCPs) and interactive proofs (IPs). We present IOP constructions and techniques that let us achieve tradeoffs in proof length versus query complexity that are not known to be achievable via PCPs or IPs alone. Our main results are: 1. Circuit satisfiability has 3-round IOPs with linear proof length (counted in bits) and constant query complexity. 2. Reed–Solomon codes have 2-round IOPs of proximity with linear proof length and constant query complexity. 3. Tensor product codes have 1-round IOPs of proximity with sublinear proof length and constant query complexity. (A familiar example of a tensor product code is the Reed–Muller code with a bound on individual degrees.) For all the above, known PCP constructions give quasilinear proof length and constant query complexity [12, 16]. Also, for circuit satisfiability, [10] obtain PCPs with linear proof length but sublinear (and super-constant) query complexity. As in [10], we rely on algebraic-geometry codes to obtain our first result; but, unlike that work, our use of such codes is much “lighter” because we do not rely on any automorphisms of the code.
    [Show full text]
  • User's Guide for Complexity: a LATEX Package, Version 0.80
    User’s Guide for complexity: a LATEX package, Version 0.80 Chris Bourke April 12, 2007 Contents 1 Introduction 2 1.1 What is complexity? ......................... 2 1.2 Why a complexity package? ..................... 2 2 Installation 2 3 Package Options 3 3.1 Mode Options .............................. 3 3.2 Font Options .............................. 4 3.2.1 The small Option ....................... 4 4 Using the Package 6 4.1 Overridden Commands ......................... 6 4.2 Special Commands ........................... 6 4.3 Function Commands .......................... 6 4.4 Language Commands .......................... 7 4.5 Complete List of Class Commands .................. 8 5 Customization 15 5.1 Class Commands ............................ 15 1 5.2 Language Commands .......................... 16 5.3 Function Commands .......................... 17 6 Extended Example 17 7 Feedback 18 7.1 Acknowledgements ........................... 19 1 Introduction 1.1 What is complexity? complexity is a LATEX package that typesets computational complexity classes such as P (deterministic polynomial time) and NP (nondeterministic polynomial time) as well as sets (languages) such as SAT (satisfiability). In all, over 350 commands are defined for helping you to typeset Computational Complexity con- structs. 1.2 Why a complexity package? A better question is why not? Complexity theory is a more recent, though mature area of Theoretical Computer Science. Each researcher seems to have his or her own preferences as to how to typeset Complexity Classes and has built up their own personal LATEX commands file. This can be frustrating, to say the least, when it comes to collaborations or when one has to go through an entire series of files changing commands for compatibility or to get exactly the look they want (or what may be required).
    [Show full text]
  • A Short History of Computational Complexity
    The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns.
    [Show full text]
  • TC Circuits for Algorithmic Problems in Nilpotent Groups
    TC0 Circuits for Algorithmic Problems in Nilpotent Groups Alexei Myasnikov1 and Armin Weiß2 1 Stevens Institute of Technology, Hoboken, NJ, USA 2 Universität Stuttgart, Germany Abstract Recently, Macdonald et. al. showed that many algorithmic problems for finitely generated nilpo- tent groups including computation of normal forms, the subgroup membership problem, the con- jugacy problem, and computation of subgroup presentations can be done in LOGSPACE. Here we follow their approach and show that all these problems are complete for the uniform circuit class TC0 – uniformly for all r-generated nilpotent groups of class at most c for fixed r and c. Moreover, if we allow a certain binary representation of the inputs, then the word problem and computation of normal forms is still in uniform TC0, while all the other problems we examine are shown to be TC0-Turing reducible to the problem of computing greatest common divisors and expressing them as linear combinations. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.0 Discrete Mathematics Keywords and phrases nilpotent groups, TC0, abelian groups, word problem, conjugacy problem, subgroup membership problem, greatest common divisors Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.23 1 Introduction The word problem (given a word over the generators, does it represent the identity?) is one of the fundamental algorithmic problems in group theory introduced by Dehn in 1911 [3]. While for general finitely presented groups all these problems are undecidable [22, 2], for many particular classes of groups decidability results have been established – not just for the word problem but also for a wide range of other problems.
    [Show full text]
  • Limits to Parallel Computation: P-Completeness Theory
    Limits to Parallel Computation: P-Completeness Theory RAYMOND GREENLAW University of New Hampshire H. JAMES HOOVER University of Alberta WALTER L. RUZZO University of Washington New York Oxford OXFORD UNIVERSITY PRESS 1995 This book is dedicated to our families, who already know that life is inherently sequential. Preface This book is an introduction to the rapidly growing theory of P- completeness — the branch of complexity theory that focuses on identifying the “hardest” problems in the class P of problems solv- able in polynomial time. P-complete problems are of interest because they all appear to lack highly parallel solutions. That is, algorithm designers have failed to find NC algorithms, feasible highly parallel solutions that take time polynomial in the logarithm of the problem size while using only a polynomial number of processors, for them. Consequently, the promise of parallel computation, namely that ap- plying more processors to a problem can greatly speed its solution, appears to be broken by the entire class of P-complete problems. This state of affairs is succinctly expressed as the following question: Does P equal NC ? Organization of the Material The book is organized into two parts: an introduction to P- completeness theory, and a catalog of P-complete and open prob- lems. The first part of the book is a thorough introduction to the theory of P-completeness. We begin with an informal introduction. Then we discuss the major parallel models of computation, describe the classes NC and P, and present the notions of reducibility and com- pleteness. We subsequently introduce some fundamental P-complete problems, followed by evidence suggesting why NC does not equal P.
    [Show full text]
  • Some NP-Complete Problems
    Appendix A Some NP-Complete Problems To ask the hard question is simple. But what does it mean? What are we going to do? W.H. Auden In this appendix we present a brief list of NP-complete problems; we restrict ourselves to problems which either were mentioned before or are closely re- lated to subjects treated in the book. A much more extensive list can be found in Garey and Johnson [GarJo79]. Chinese postman (cf. Sect. 14.5) Let G =(V,A,E) be a mixed graph, where A is the set of directed edges and E the set of undirected edges of G. Moreover, let w be a nonnegative length function on A ∪ E,andc be a positive number. Does there exist a cycle of length at most c in G which contains each edge at least once and which uses the edges in A according to their given orientation? This problem was shown to be NP-complete by Papadimitriou [Pap76], even when G is a planar graph with maximal degree 3 and w(e) = 1 for all edges e. However, it is polynomial for graphs and digraphs; that is, if either A = ∅ or E = ∅. See Theorem 14.5.4 and Exercise 14.5.6. Chromatic index (cf. Sect. 9.3) Let G be a graph. Is it possible to color the edges of G with k colors, that is, does χ(G) ≤ k hold? Holyer [Hol81] proved that this problem is NP-complete for each k ≥ 3; this holds even for the special case where k =3 and G is 3-regular.
    [Show full text]
  • Descriptive Complexity: a Logicians Approach to Computation
    Descriptive Complexity: A Logician’s Approach to Computation N. Immerman basic issue in computer science is there are exponentially many possibilities, the complexity of problems. If one is but in this case no known algorithm is faster doing a calculation once on a than exponential time. medium-sized input, the simplest al- Computational complexity measures how gorithm may be the best method to much time and/or memory space is needed as Ause, even if it is not the fastest. However, when a function of the input size. Let TIME[t(n)] be the one has a subproblem that will have to be solved set of problems that can be solved by algorithms millions of times, optimization is important. A that perform at most O(t(n)) steps for inputs of fundamental issue in theoretical computer sci- size n. The complexity class polynomial time (P) ence is the computational complexity of prob- is the set of problems that are solvable in time lems. How much time and how much memory at most some polynomial in n. space is needed to solve a particular problem? ∞ Here are a few examples of such problems: P= TIME[nk] 1. Reachability: Given a directed graph and k[=1 two specified points s,t, determine if there Even though the class TIME[t(n)] is sensitive is a path from s to t. A simple, linear-time to the exact machine model used in the com- algorithm marks s and then continues to putations, the class P is quite robust. The prob- mark every vertex at the head of an edge lems Reachability and Min-triangulation are el- whose tail is marked.
    [Show full text]
  • Circuit Complexity and Computational Complexity
    Circuit Complexity and Computational Complexity Lecture Notes for Math 267AB University of California, San Diego January{June 1992 Instructor: Sam Buss Notes by: Frank Baeuerle Sam Buss Bob Carragher Matt Clegg Goran Gogi¶c Elias Koutsoupias John Lillis Dave Robinson Jinghui Yang 1 These lecture notes were written for a topics course in the Mathematics Department at the University of California, San Diego during the winter and spring quarters of 1992. Each student wrote lecture notes for between two and ¯ve one and one half hour lectures. I'd like to thank the students for a superb job of writing up lecture notes. January 9-14. Bob Carragher's notes on Introduction to circuit complexity. Theorems of Shannon and Lupanov giving upper and lower bounds of circuit complexity of almost all Boolean functions. January 14-21. Matt Clegg's notes on Spira's theorem relating depth and formula size Krapchenko's lower bound on formula size over AND/OR/NOT January 23-28. Frank Baeuerle's notes on Neciporuk's theorem Simulation of time bounded TM's by circuits January 30 - February 4. John Lillis's notes on NC/AC hierarchy Circuit value problem Depth restricted circuits for space bounded Turing machines Addition is in NC1. February 6-13. Goran Gogi¶c's notes on Circuits for parallel pre¯x vector addition and for symmetric functions. February 18-20. Dave Robinson's notes on Schnorr's 2n-3 lower bound on circuit size Blum's 3n-o(n) lower bound on circuit size February 25-27. Jinghui Yang's notes on Subbotovskaya's theorem Andreev's n2:5 lower bound on formula size with AND/OR/NOT.
    [Show full text]
  • Computing Quantum Discord Is NP-Complete (Theorem 2)
    Computing quantum discord is NP-complete Yichen Huang Department of Physics, University of California, Berkeley, CA 94720, USA March 31, 2014 Abstract We study the computational complexity of quantum discord (a measure of quantum cor- relation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum discord in a quantum system of moderate size is not possible in practice. As by-products, some entanglement measures (namely entanglement cost, entanglement of formation, relative entropy of entanglement, squashed entanglement, classical squashed entanglement, conditional entanglement of mutual information, and broadcast regu- larization of mutual information) and constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic results are directly applicable in common randomness distillation, quantum state merging, entanglement distillation, superdense coding, and quantum teleportation; they may offer significant insights into quantum information processing. More- over, we prove the NP-completeness of two typical problems: linear optimization over classical states and detecting classical states in a convex set, providing evidence that working with clas- sical states is generically computationally intractable. 1 Introduction Quite a few fundamental concepts in quantum mechanics do not have classical analogs: uncertainty relations [7, 12, 48, 49, 75], quantum nonlocality [21, 31, 44, 73], etc. Quantum entanglement [44, 73], defined based on the notion of local operations and classical communication (LOCC), is the most prominent manifestation of quantum correlation. It is a resource in quantum information processing, enabling tasks such as superdense coding [11], quantum teleportation [9] and quantum state merging [41, 42].
    [Show full text]