Descriptive Complexity: a Logicians Approach to Computation

Total Page:16

File Type:pdf, Size:1020Kb

Descriptive Complexity: a Logicians Approach to Computation Descriptive Complexity: A Logician’s Approach to Computation N. Immerman basic issue in computer science is there are exponentially many possibilities, the complexity of problems. If one is but in this case no known algorithm is faster doing a calculation once on a than exponential time. medium-sized input, the simplest al- Computational complexity measures how gorithm may be the best method to much time and/or memory space is needed as Ause, even if it is not the fastest. However, when a function of the input size. Let TIME[t(n)] be the one has a subproblem that will have to be solved set of problems that can be solved by algorithms millions of times, optimization is important. A that perform at most O(t(n)) steps for inputs of fundamental issue in theoretical computer sci- size n. The complexity class polynomial time (P) ence is the computational complexity of prob- is the set of problems that are solvable in time lems. How much time and how much memory at most some polynomial in n. space is needed to solve a particular problem? ∞ Here are a few examples of such problems: P= TIME[nk] 1. Reachability: Given a directed graph and k[=1 two specified points s,t, determine if there Even though the class TIME[t(n)] is sensitive is a path from s to t. A simple, linear-time to the exact machine model used in the com- algorithm marks s and then continues to putations, the class P is quite robust. The prob- mark every vertex at the head of an edge lems Reachability and Min-triangulation are el- whose tail is marked. When no more vertices ements of P. can be marked, t is reachable from s iff it Some important computational problems ap- has been marked. pear to require more than polynomial time. An 2. Min-triangulation: Given a polygon in the interesting class of such problems is contained plane and a length L, determine if there is in nondeterministic polynomial time (NP). A a triangulation of the polygon of total length nondeterministic computation is one that may less than or equal to L. Even though there make arbitrary choices as it works. If any of are exponentially many possible triangula- these choices leads to an accept state, then we tions, a dynamic programming algorithm say the input is accepted. As an example, let us can find an optimal one in O(n3) steps. consider the three-colorability problem. A non- 3. Three-Colorability: Given an undirected deterministic algorithm traverses the input graph, determine whether its vertices can be graph, arbitrarily assigning to each vertex a colored using three colors with no two ad- color: red, yellow, or blue. Then it checks whether jacent vertices having the same color. Again each edge joins vertices of different colors. If so, N. Immerman is professor in the Department of Com- it accepts. puter Science, University of Massachusetts at Amherst. A nondeterministic computation can be mod- His e-mail address is [email protected]. eled as a tree whose root is the starting config- OCTOBER 1995 NOTICES OF THE AMS 1127 uration. Every choice forms a branching node. Complexity theory typically considers yes/no The computation accepts if any of the leaves is problems: this is the examination of the difficulty an accepting configuration. The nondeterministic of computing a particular bit of the desired out- time of this computation is the length of the path put. Yes/no problems are properties of the input: from root to accepting leaf, not the exponentially the set of all inputs to which the answer is yes larger size of the tree of all possible choices. have the property in question. Rather than ask- Continuing the example, given a graph G with ing the complexity of checking if a certain input v vertices, the nondeterministic three-col- has a property T, in descriptive complexity we orability algorithm defines a computation tree ask how hard it is to express the property T in that has 3v branches, one for each possible col- a formal language. It is plausible that properties oring of the vertices. Each such branch ends in that are harder to check might be harder to ex- an accepting leaf if and only if the correspond- press. What is surprising is how closely math- ing coloring is a valid three coloring. It follows ematics mimics the physical world: when we that there exists an accepting leaf just if G is use first-order logic, descriptive complexity ex- three-colorable. Thus, three-colorability can be actly captures the important complexity classes. checked in nondeterministic O(n) time—where In descriptive complexity we view inputs as n is the number of vertices plus edges. Three- finite logical structures, e.g., a binary string colorability is in NP. w = w1w2 . w w is coded as The three-colorability problem as well as hun- | | w dreds of other well-known combinatorial prob- w = 1, 2, . , w , S , A h{ | |} ≤i lems are NP complete. (See [8] for a survey of consisting of a universe U = 1, 2, . , w of many of these.) This means that not only are they { | |} in NP, but they are the “hardest problems” in NP: the bit positions in the string, the monadic re- w w th all problems in NP are reducible to each NP- lation S defined so that S (i) holds iff the i bit of w is one, and , the usual total ordering complete problem. (A reduction from problem ≤ A to problem B is a polynomial-time mapping on U. from any input to A to an input to B that has A graph is a logical structure G the same answer. It follows that if A is reducible G = 1,2,... ,v ,E whose universe is the A h{ } i G to B and B is in P, then A is in P.) At present, set of vertices and where E is the binary edge the fastest known algorithm for any of these relation. A graph problem is a set of finite struc- problems is exponential. An efficient algorithm tures whose vocabulary consists of a single bi- for any one of these problems would translate nary relation. Similarly, we may think of any problem T in some complexity class as a set to an efficient algorithm for all of them. C The P= NP question is an example of our in- of structures of some fixed vocabulary. ability to determine what can or cannot be com- Recall that in first-order logic we can quan- puted in a certain amount of computational re- tify over the universe. We can say, for example, source: time, space, parallel time, etc. The only that a string ends in a one. The following sen- truly effective tool that we currently have for this tence does this by asserting the existence of a is Cantor’s diagonalization argument. This is string position x that is the last position and by very useful for proving hierarchy theorems, i.e., asserting S(x), i.e., the bit at that position is a that more of a given computational resource en- one: ables us to compute more. ( x)( y)(y x S(x)) ∃ ∀ ≤ ∧ " 2 " 2 TIME[n] TIME[n ]; NTIME[n] NTIME[n ]; As another example we can say that there are SPACE[n] " SPACE[n2] exactly two edges leaving every vertex: However, there are no known techniques for ( x)( yz)( w)(y = z E(x, y) E(x, z) comparing different types of resources, e.g., ∀ ∃ ∀ 6 ∧ ∧ (E(x, w) w = y w = z)) time versus nondeterministic time, time versus ∧ → ∨ space, etc. For any structure , we use the notation = ϕ These notions of complexity might not seem to mean that ϕ isA true in . A | fundamental, but rather tied to the sort of ma- In second-order logic weA also have variables chine that the algorithm will be performed on. Xi that range over relations over the universe. On the contrary, the notions of time, space, par- These variables may be quantified. allel time, and even nondeterministic time are A second-order existential formula (SO ) be- fundamental and have many equivalent formu- gins with second-order existential quantifiers∃ lations. One such formulation which I will now and is followed by a first-order formula. As an describe involves no machines at all but relies example, the following second-order existential instead on classic notions from mathematical sentence 3 says that the graph in question is logic. three-colorable. It does this by asserting that Ψ 1128 NOTICES OF THE AMS VOLUME 42, NUMBER 10 there are three unary relations—Red (R), Yellow clude a binary relation symbol “ ” denoting a (Y), and Blue (B)—defined on the universe of ver- total ordering on the universe. With≤ this proviso, tices. It goes on to say that every vertex has we can relate computational complexity to first- some color and no two adjacent vertices have the order descriptive complexity. same color. Let FO-SIZE[s(n)] be the set of properties ex- pressible by uniform sequences of first-order for- 3 ( R)( Y )( B)( x) th ≡ ∃ ∃ ∃ ∀ mulas ϕi i Z+ such that the n formula has [(R(x) Y (x) B(x)) ( y) (E(x, y) O(s(n)){symbols} ∈ and expresses the property in Ψ ∨ ∨ ∧ ∀ → (R(x) R(y)) (Y (x) Y (y)) question for structures of size n. (Uniform means ¬ ∧ ∧ ¬ ∧ that the map n ϕn has very low complexity, (B(x) B(y)))] 7→ ∧ ¬ ∧ e.g., SPACE[log n]. Later we will see that purely syntactic uniformity condi- Descriptive complexity tions suffice.) began with the following the- The following theorem orem of Ronald Fagin.
Recommended publications
  • Infinitary Logic and Inductive Definability Over Finite Structures
    University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science November 1991 Infinitary Logic and Inductive Definability Over Finite Structures Anuj Dawar University of Pennsylvania Steven Lindell University of Pennsylvania Scott Weinstein University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/cis_reports Recommended Citation Anuj Dawar, Steven Lindell, and Scott Weinstein, "Infinitary Logic and Inductive Definability Over Finite Structures", . November 1991. University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-97. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/365 For more information, please contact [email protected]. Infinitary Logic and Inductive Definability Over Finite Structures Abstract The extensions of first-order logic with a least fixed point operators (FO + LFP) and with a partial fixed point operator (FO + PFP) are known to capture the complexity classes P and PSPACE respectively in the presence of an ordering relation over finite structures. Recently, Abiteboul and Vianu [AV91b] investigated the relation of these two logics in the absence of an ordering, using a mchine model of generic computation. In particular, they showed that the two languages have equivalent expressive power if and only if P = PSPACE. These languages can also be seen as fragments of an infinitary logic where each ω formula has a bounded number of variables, L ∞ω (see, for instance, [KV90]). We present a treatment of the results in [AV91b] from this point of view. In particular, we show that we can write a formula of FO + LFP and P from ordered structures to classes of structures where every element is definable.
    [Show full text]
  • Relations 21
    2. CLOSURE OF RELATIONS 21 2. Closure of Relations 2.1. Definition of the Closure of Relations. Definition 2.1.1. Given a relation R on a set A and a property P of relations, the closure of R with respect to property P , denoted ClP (R), is smallest relation on A that contains R and has property P . That is, ClP (R) is the relation obtained by adding the minimum number of ordered pairs to R necessary to obtain property P . Discussion To say that ClP (R) is the “smallest” relation on A containing R and having property P means that • R ⊆ ClP (R), • ClP (R) has property P , and • if S is another relation with property P and R ⊆ S, then ClP (R) ⊆ S. The following theorem gives an equivalent way to define the closure of a relation. \ Theorem 2.1.1. If R is a relation on a set A, then ClP (R) = S, where S∈P P = {S|R ⊆ S and S has property P }. Exercise 2.1.1. Prove Theorem 2.1.1. [Recall that one way to show two sets, A and B, are equal is to show A ⊆ B and B ⊆ A.] 2.2. Reflexive Closure. Definition 2.2.1. Let A be a set and let ∆ = {(x, x)|x ∈ A}. ∆ is called the diagonal relation on A. Theorem 2.2.1. Let R be a relation on A. The reflexive closure of R, denoted r(R), is the relation R ∪ ∆. Proof. Clearly, R ∪ ∆ is reflexive, since (a, a) ∈ ∆ ⊆ R ∪ ∆ for every a ∈ A.
    [Show full text]
  • Scalability of Reflexive-Transitive Closure Tables As Hierarchical Data Solutions
    Scalability of Reflexive- Transitive Closure Tables as Hierarchical Data Solutions Analysis via SQL Server 2008 R2 Brandon Berry, Engineer 12/8/2011 Reflexive-Transitive Closure (RTC) tables, when used to persist hierarchical data, present many advantages over alternative persistence strategies such as path enumeration. Such advantages include, but are not limited to, referential integrity and a simple structure for data queries. However, RTC tables grow exponentially and present a concern with scaling both operational performance of the RTC table and volume of the RTC data. Discovering these practical performance boundaries involves understanding the growth patterns of reflexive and transitive binary relations and observing sample data for large hierarchical models. Table of Contents 1 Introduction ......................................................................................................................................... 2 2 Reflexive-Transitive Closure Properties ................................................................................................. 3 2.1 Reflexivity ...................................................................................................................................... 3 2.2 Transitivity ..................................................................................................................................... 3 2.3 Closure .......................................................................................................................................... 4 3 Scalability
    [Show full text]
  • Week 1: an Overview of Circuit Complexity 1 Welcome 2
    Topics in Circuit Complexity (CS354, Fall’11) Week 1: An Overview of Circuit Complexity Lecture Notes for 9/27 and 9/29 Ryan Williams 1 Welcome The area of circuit complexity has a long history, starting in the 1940’s. It is full of open problems and frontiers that seem insurmountable, yet the literature on circuit complexity is fairly large. There is much that we do know, although it is scattered across several textbooks and academic papers. I think now is a good time to look again at circuit complexity with fresh eyes, and try to see what can be done. 2 Preliminaries An n-bit Boolean function has domain f0; 1gn and co-domain f0; 1g. At a high level, the basic question asked in circuit complexity is: given a collection of “simple functions” and a target Boolean function f, how efficiently can f be computed (on all inputs) using the simple functions? Of course, efficiency can be measured in many ways. The most natural measure is that of the “size” of computation: how many copies of these simple functions are necessary to compute f? Let B be a set of Boolean functions, which we call a basis set. The fan-in of a function g 2 B is the number of inputs that g takes. (Typical choices are fan-in 2, or unbounded fan-in, meaning that g can take any number of inputs.) We define a circuit C with n inputs and size s over a basis B, as follows. C consists of a directed acyclic graph (DAG) of s + n + 2 nodes, with n sources and one sink (the sth node in some fixed topological order on the nodes).
    [Show full text]
  • Computational Complexity: a Modern Approach
    i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University [email protected] Not to be reproduced or distributed without the authors’ permission This is an Internet draft. Some chapters are more finished than others. References and attributions are very preliminary and we apologize in advance for any omissions (but hope you will nevertheless point them out to us). Please send us bugs, typos, missing references or general comments to [email protected] — Thank You!! DRAFT ii DRAFT Chapter 9 Complexity of counting “It is an empirical fact that for many combinatorial problems the detection of the existence of a solution is easy, yet no computationally efficient method is known for counting their number.... for a variety of problems this phenomenon can be explained.” L. Valiant 1979 The class NP captures the difficulty of finding certificates. However, in many contexts, one is interested not just in a single certificate, but actually counting the number of certificates. This chapter studies #P, (pronounced “sharp p”), a complexity class that captures this notion. Counting problems arise in diverse fields, often in situations having to do with estimations of probability. Examples include statistical estimation, statistical physics, network design, and more. Counting problems are also studied in a field of mathematics called enumerative combinatorics, which tries to obtain closed-form mathematical expressions for counting problems. To give an example, in the 19th century Kirchoff showed how to count the number of spanning trees in a graph using a simple determinant computation. Results in this chapter will show that for many natural counting problems, such efficiently computable expressions are unlikely to exist.
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • Canonical Models and the Complexity of Modal Team Logic
    On the Complexity of Team Logic and its Two-Variable Fragment Martin Lück Leibniz Universität Hannover, Germany [email protected] Abstract. We study the logic FO(∼), the extension of first-order logic with team semantics by unrestricted Boolean negation. It was recently shown axiomatizable, but otherwise has not yet received much attention in questions of computational complexity. In this paper, we consider its two-variable fragment FO2(∼) and prove that its satisfiability problem is decidable, and in fact complete for the recently introduced non-elementary class TOWER(poly). Moreover, we classify the complexity of model checking of FO(∼) with respect to the number of variables and the quantifier rank, and prove a di- chotomy between PSPACE- and ATIME-ALT(exp, poly)-completeness. To achieve the lower bounds, we propose a translation from modal team logic MTL to FO2(∼) that extends the well-known standard translation from modal logic ML to FO2. For the upper bounds, we translate to a fragment of second-order logic. Keywords: team semantics, two-variable logic, complexity, satisfiability, model checking 2012 ACM Subject Classification: Theory of computation → Complexity theory and logic; Logic; 1. Introduction In the last decades, the work of logicians has unearthed a plethora of decidable fragments of first-order logic FO. Many of these cases are restricted quantifier prefixes, such as the BSR-fragment which contains only ∃∗∀∗-sentences [30]. Others include the guarded arXiv:1804.04968v1 [cs.LO] 13 Apr 2018 fragment GF [1], the recently introduced separated fragment SF [32, 34], or the two-variable fragment FO2 [13, 27, 31].
    [Show full text]
  • MATH 213 Chapter 9: Relations
    MATH 213 Chapter 9: Relations Dr. Eric Bancroft Fall 2013 9.1 - Relations Definition 1 (Relation). Let A and B be sets. A binary relation from A to B is a subset R ⊆ A×B, i.e., R is a set of ordered pairs where the first element from each pair is from A and the second element is from B. If (a; b) 2 R then we write a R b or a ∼ b (read \a relates/is related to b [by R]"). If (a; b) 2= R, then we write a R6 b or a b. We can represent relations graphically or with a chart in addition to a set description. Example 1. A = f0; 1; 2g;B = f1; 2; 3g;R = f(1; 1); (2; 1); (2; 2)g Example 2. (a) \Parent" (b) 8x; y 2 Z; x R y () x2 + y2 = 8 (c) A = f0; 1; 2g;B = f1; 2; 3g; a R b () a + b ≥ 3 1 Note: All functions are relations, but not all relations are functions. Definition 2. If A is a set, then a relation on A is a relation from A to A. Example 3. How many relations are there on a set with. (a) two elements? (b) n elements? (c) 14 elements? Properties of Relations Definition 3 (Reflexive). A relation R on a set A is said to be reflexive if and only if a R a for all a 2 A. Definition 4 (Symmetric). A relation R on a set A is said to be symmetric if and only if a R b =) b R a for all a; b 2 A.
    [Show full text]
  • Lecture 10: Space Complexity III
    Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Lecture 10: Space Complexity III Arijit Bishnu 27.03.2010 Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ). The class NPSPACE is an analog of the class NP. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ).
    [Show full text]
  • Properties of Binary Transitive Closure Logics Over Trees S K
    8 Properties of binary transitive closure logics over trees S K Abstract Binary transitive closure logic (FO∗ for short) is the extension of first-order predicate logic by a transitive closure operator of binary relations. Deterministic binary transitive closure logic (FOD∗) is the restriction of FO∗ to deterministic transitive closures. It is known that these logics are more powerful than FO on arbitrary structures and on finite ordered trees. It is also known that they are at most as powerful as monadic second-order logic (MSO) on arbitrary structures and on finite trees. We will study the expressive power of FO∗ and FOD∗ on trees to show that several MSO properties can be expressed in FOD∗ (and hence FO∗). The following results will be shown. A linear order can be defined on the nodes of a tree. The class EVEN of trees with an even number of nodes can be defined. On arbitrary structures with a tree signature, the classes of trees and finite trees can be defined. There is a tree language definable in FOD∗ that cannot be recognized by any tree walking automaton. FO∗ is strictly more powerful than tree walking automata. These results imply that FOD∗ and FO∗ are neither compact nor do they have the L¨owenheim-Skolem-Upward property. Keywords B 8.1 Introduction The question aboutthe best suited logic for describing tree properties or defin- ing tree languages is an important one for model theoretic syntax as well as for querying treebanks. Model theoretic syntax is a research program in mathematical linguistics concerned with studying the descriptive complex- Proceedings of FG-2006.
    [Show full text]
  • Glossary of Complexity Classes
    App endix A Glossary of Complexity Classes Summary This glossary includes selfcontained denitions of most complexity classes mentioned in the b o ok Needless to say the glossary oers a very minimal discussion of these classes and the reader is re ferred to the main text for further discussion The items are organized by topics rather than by alphab etic order Sp ecically the glossary is partitioned into two parts dealing separately with complexity classes that are dened in terms of algorithms and their resources ie time and space complexity of Turing machines and complexity classes de ned in terms of nonuniform circuits and referring to their size and depth The algorithmic classes include timecomplexity based classes such as P NP coNP BPP RP coRP PH E EXP and NEXP and the space complexity classes L NL RL and P S P AC E The non k uniform classes include the circuit classes P p oly as well as NC and k AC Denitions and basic results regarding many other complexity classes are available at the constantly evolving Complexity Zoo A Preliminaries Complexity classes are sets of computational problems where each class contains problems that can b e solved with sp ecic computational resources To dene a complexity class one sp ecies a mo del of computation a complexity measure like time or space which is always measured as a function of the input length and a b ound on the complexity of problems in the class We follow the tradition of fo cusing on decision problems but refer to these problems using the terminology of promise problems
    [Show full text]
  • Interactive Oracle Proofs with Constant Rate and Query Complexity∗†
    Interactive Oracle Proofs with Constant Rate and Query Complexity∗† Eli Ben-Sasson1, Alessandro Chiesa2, Ariel Gabizon‡3, Michael Riabzev4, and Nicholas Spooner5 1 Technion, Haifa, Israel [email protected] 2 University of California, Berkeley, CA, USA [email protected] 3 Zerocoin Electronic Coin Company (Zcash), Boulder, CO, USA [email protected] 4 Technion, Haifa, Israel [email protected] 5 University of Toronto, Toronto, Canada [email protected] Abstract We study interactive oracle proofs (IOPs) [7, 43], which combine aspects of probabilistically check- able proofs (PCPs) and interactive proofs (IPs). We present IOP constructions and techniques that let us achieve tradeoffs in proof length versus query complexity that are not known to be achievable via PCPs or IPs alone. Our main results are: 1. Circuit satisfiability has 3-round IOPs with linear proof length (counted in bits) and constant query complexity. 2. Reed–Solomon codes have 2-round IOPs of proximity with linear proof length and constant query complexity. 3. Tensor product codes have 1-round IOPs of proximity with sublinear proof length and constant query complexity. (A familiar example of a tensor product code is the Reed–Muller code with a bound on individual degrees.) For all the above, known PCP constructions give quasilinear proof length and constant query complexity [12, 16]. Also, for circuit satisfiability, [10] obtain PCPs with linear proof length but sublinear (and super-constant) query complexity. As in [10], we rely on algebraic-geometry codes to obtain our first result; but, unlike that work, our use of such codes is much “lighter” because we do not rely on any automorphisms of the code.
    [Show full text]