A Cluster of Cooperating Tumor-Suppressor Gene Candidates in Chromosomal Deletions

Total Page:16

File Type:pdf, Size:1020Kb

A Cluster of Cooperating Tumor-Suppressor Gene Candidates in Chromosomal Deletions A cluster of cooperating tumor-suppressor gene candidates in chromosomal deletions Wen Xuea,1,2, Thomas Kitzinga,1,3, Stephanie Roesslerb, Johannes Zubera, Alexander Krasnitza, Nikolaus Schultzc, Kate Revilla, Susann Weissmuellerd,3, Amy R. Rappaporta, Janelle Simona,e,3, Jack Zhanga, Weijun Luoa, James Hicksa, Lars Zendera,4, Xin Wei Wangb, Scott Powersa, Michael Wiglera,5, and Scott W. Lowea,e,3,5 aCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; bLaboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; cComputational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; dWatson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and eHoward Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Contributed by Michael Wigler, April 12, 2012 (sent for review January 13, 2012) The large chromosomal deletions frequently observed in cancer the extent of chromosome 8p deletions from cancer genome genomes are often thought to arise as a “two-hit” mechanism in the datasets derived from array-based comparative genomic hybrid- process of tumor-suppressor gene (TSG) inactivation. Using a murine ization (aCGH) performed at Cold Spring Harbor Laboratory and model system of hepatocellular carcinoma (HCC) and in vivo RNAi, the Cancer Genome Atlas (TCGA) project, totaling 1411 primary we test an alternative hypothesis, that such deletions can arise from tumor samples and cell lines of HCC and breast, colon, and lung selective pressure to attenuate the activity of multiple genes. By cancers (Fig. 1A and Materials and Methods). According to these targeting the mouse orthologs of genes frequently deleted on hu- data, approximately half of these tumors harbor heterozygous man 8p22 and adjacent regions, which are lost in approximately deletions of human chromosome 8p, often encompassing a large half of several other major epithelial cancers, we provide evidence portion of or even the entire chromosome arm (Fig. 1A). Focusing suggesting that multiple genes on chromosome 8p can coopera- on 8p deletions in HCC, we noted that the most frequently deleted tively inhibit tumorigenesis in mice, and that their cosuppression region on 8p centered around the DLC1 gene (Fig. 1A), that in can synergistically promote tumor growth. In addition, in human HCC these deletions occur more frequently than those on chro- HCC patients, the combined down-regulation of functionally vali- mosome 17p encompassing TP53 (3). However, this chromosome dated 8p TSGs is associated with poor survival, in contrast to the arm contains other candidate TSGs (5–8), and indeed, most dele- down-regulation of any individual gene. Our data imply that large tions encompass regions adjacent to DLC1, including the whole cancer-associated deletions can produce phenotypes distinct from 8p22 cytoband or even the whole chromosome 8p arm (Fig. 1A). those arising through loss of a single TSG, and as such should be To identify a relevant genetic context in which to study 8p loss, considered and studied as distinct mutational events. we analyzed 197 primary HCCs (3, 9, 10) for copy number aber- rations associated with 8p deletions (Fig. 1B). Amplifications of cancer genomics | chromosome 8p deletion | RNAi screen chromosome 1q, 5p, 6p, and 8q (involving MYC) and losses in- cluding TP53 on 17p were significantly associated with 8p dele- ost cancer genomes contain large heterozygous deletions of tions (Fig. 1B). In addition, unsupervised hierarchical linkage Muncertain biological significance. Early studies on the tu- clustering of 197 primary HCCs revealed that they fell within 12 mor-suppressor genes (TSGs) RB and TP53 suggested that such groups, and that the 8p loss, 8q gain, and 17p loss cancers were clustered mainly within one subgroup that represents ∼40% of all deletions can arise as a single mechanism for loss of heterozygosity fi and, consequently, it is often assumed that they provide a “second- HCCs (Fig. 1C). These data con rm that genotypes involving hit” event to inactivate a single TSG (1). However, genomic MYC overexpression and TP53 loss are a valid genetic context in approaches have not conclusively identified a definitive TSG which to study candidate 8p TSGs. within some cancer-associated deletions, raising the possibility Chromosome 8p Harbors Multiple Genes That Inhibit Tumorigenesis in that they occur through genomic instability or selection for the Mice. To identify TSGs located on 8p, we tested whether RNAi- reduced activity of multiple genes. Even in chromosomal regions mediated suppression of various 8p genes would promote tu- fi “ ” fi where a bona de two-hit TSG has been identi ed, the large morigenesis in a mouse HCC model used previously for TSG deletions often associated with loss of heterozygosity reduce the discovery (11). Initially focusing in an unbiased approach on the dosages of neighboring genes, which could in principle contribute 8p22 region surrounding DLC1, we transduced pools of three fi to tumorigenesis in a haploinsuf cient manner. shRNAs individually targeting each mouse ortholog of all 21 Large deletions encompassing regions of chromosome 8p are very common in human tumors (2, 3) and often occur together with 8q gains encompassing MYC (4). Previously, we validated the 8p Author contributions: W.X., T.K., J. Zuber, L.Z., M.W., and S.W.L. designed research; W.X., gene DLC1, encoding a Rho GAP, as a TSG using a mouse model T.K., and J.S. performed research; J. Zuber, N.S., and A.R.R. contributed new reagents/ of hepatocellular carcinoma (HCC), confirming that its attenua- analytic tools; W.X., T.K., S.R., A.K., N.S., K.R., S.W., J. Zhang, W.L., J.H., X.W.W., and S.P. tion can serve as a driving oncogenic event (3). Although DLC1 is analyzed data; and W.X., T.K., M.W., and S.W.L. wrote the paper. at an epicenter of deletions, these deletions are frequently much The authors declare no conflict of interest. 1 larger and reduce the dosages of tens or hundreds of genes, often W.X. and T.K. contributed equally to this work. encompassing the entire 8p22 cytoband and beyond (2, 5, 6). In- 2Present address: Koch Institute for Integrative Cancer Research and Department of Bi- deed, multiple candidate TSGs have been proposed in the region ology, Massachusetts Institute of Technology, Cambridge, MA 02139. 3 (5–8). Here we explore the hypothesis that chromosome 8p dele- Present address: Department of Cancer Biology and Genetics, Sloan-Kettering Institute, New York, NY 10065. tions arise owing to selection for the attenuation of multiple genes. 4Present address: Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany and Department of Gastroenterology and Hepatology, University of Hannover Medical Results School, 30625 Hannover, Germany. Chromosome 8p Deletions Are Frequently Large and Co-Occur with 8q 5To whom correspondence may be addressed. E-mail: [email protected] or [email protected]. fi Gains and 17p Loss. To better de ne regions affected by the 8p This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. deletions frequently occurring in human cancers, we determined 1073/pnas.1206062109/-/DCSupplemental. 8212–8217 | PNAS | May 22, 2012 | vol. 109 | no. 21 www.pnas.org/cgi/doi/10.1073/pnas.1206062109 Downloaded by guest on September 26, 2021 Fig. 1. Chromosome 8p deletion characteristics and co-occurring genomic aberrations. (A) Size and extent of chromosome 8p deletions (in blue) and amplifications (in red) from individual HCCs, breast cancers, colon cancers, and lung adenocarcinomas based on aCGH data analysis (Materials and Methods). The 8p22 cytoband is highlighted by a dashed line, with the organization of the 8p22 genes indicated on the right. (B) Chromosome 8p deletions co-occur with genomic aberrations in HCC, including amplifications (red) of 1q, 5p, 6p, and 8q and deletions (blue) of 17p. Fisher’s exact test was used for statistical calculations. (C) Unsupervised hierarchical clustering of genomic aberrations indicates 12 groups within the HCC dataset (n = 197). Occurrence of 8p deletion (dark red), 8q amplification (dark blue), and 17p deletion (dark orange) within the individual samples is highlighted below the dendrogram. − − annotated 8p22 protein-coding genes into p53 / liver progenitors promoted tumorigenesis over background, although with sub- overexpressing Myc, thereby approximating a relevant genetic stantial variability in tumor incidence and size (Fig. 2B and Table context in human HCC progression. The resulting cell populations S2). Five of these 14 genes demonstrated a statistically significant were then assessed for their tumorigenic potential (Fig. 2A). increase over background at the time of tumor harvest (Fig. 2B and Whereas the parental cells transduced with control shRNA were Table S2). only weakly tumorigenic, cells harboring three of the 8p22 pools, For further validation of the original candidates, we sub- including one pool containing shRNAs targeting Dlc1, sub- sequently tested the individual hairpins against the genes that stantially promoted tumorigenesis above background (Fig. 2A). showed significant tumor acceleration (i.e., Fgl1, Vps37a, Arh- fi The two other scoring shRNA pools targeted brinogen-like 1 gef10, Bin3, Bnip3l, Scara5, and Trim35) plus one more (Fbxo25) fi (Fgl1), a secreted protein of the brinogen family that is a candi- that, although not statistically significant, yielded large tumors date TSG in human HCC (12), and vacuolar
Recommended publications
  • LAG-3: from Molecular Functions to Clinical Applications
    Open access Review J Immunother Cancer: first published as 10.1136/jitc-2020-001014 on 13 September 2020. Downloaded from LAG-3: from molecular functions to clinical applications Takumi Maruhashi , Daisuke Sugiura , Il- mi Okazaki , Taku Okazaki To cite: Maruhashi T, Sugiura D, ABSTRACT (PD-1) and cytotoxic T lymphocyte antigen Okazaki I, et al. LAG-3: from To prevent the destruction of tissues owing to excessive 4 (CTLA-4) significantly improved the molecular functions to clinical and/or inappropriate immune responses, immune outcomes of patients with diverse cancer applications. Journal for cells are under strict check by various regulatory ImmunoTherapy of Cancer types, revolutionizing cancer treatment. The mechanisms at multiple points. Inhibitory coreceptors, 2020;8:e001014. doi:10.1136/ success of these therapies verified that inhib- including programmed cell death 1 (PD-1) and cytotoxic jitc-2020-001014 itory coreceptors serve as critical checkpoints T lymphocyte antigen 4 (CTLA-4), serve as critical checkpoints in restricting immune responses against for immune cells to not attack the tumor Accepted 29 July 2020 self- tissues and tumor cells. Immune checkpoint inhibitors cells as well as self-tissues. However, response that block PD-1 and CTLA-4 pathways significantly rates are typically lower and immune-related improved the outcomes of patients with diverse cancer adverse events (irAEs) are also observed in types and have revolutionized cancer treatment. However, patients administered with immune check- response rates to such therapies are rather limited, and point inhibitors. This is indicative of the immune-rela ted adverse events are also observed in a continued need to decipher the complex substantial patient population, leading to the urgent need biology of inhibitory coreceptors to increase for novel therapeutics with higher efficacy and lower response rates and prevent such unwanted toxicity.
    [Show full text]
  • Cytogenetic and Molecular Genetic Alterations in Hepatocellular Carci- Noma
    Acta Pharmacologica Sinica 2005 Jun; 26 (6): 659–665 Invited review Cytogenetic and molecular genetic alterations in hepatocellular carci- noma Sze-hang LAU, Xin-yuan GUAN1 Department of Clinical Oncology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China Key words Abstract hepatocellular carcinoma; chromosome Specific chromosome aberrations are frequently detected during the development aberrations; oncogenes; tumor suppressor of hepatocellular carcinoma. Molecular cytogenetic approaches such as com- genes parative genomic hybridization and loss of heterozygosity analyses have pro- vided fruitful information on changes in HCC cases at the genomic level. Map- 1 Correspondence to Dr Xin-yuan GUAN. ping of chromosome gains and losses have frequently resulted in the identifica- Fax 852-2816-9126. E-mail [email protected] tion of oncogenes and tumor suppressors, respectively. In this review, we sum- marize some frequently detected chromosomal aberrations reported for hepatocel- Received 2005-02-17 lular carcinoma cases using comparative genomic hybridization and loss of het- Accepted 2005-03-25 erozygosity studies. Focus will be on gains of 1q, 8q, and 20q, and losses of 4q, doi: 10.1111/j.1745-7254.2005.00126.x 8p, 13q, 16q, and 17p. We then examine the candidate oncogenes and tumor suppressors located within these regions, and explore their possible functions in hepatocarcinogenesis. Finally, the impact of microarray-based screening platforms will be discussed. Introduction based on the observation of chromosome deletion del(13) (q14) in retinoblastoma[6] and the proto-oncogene myc was Hepatocellular carcinoma (HCC) is one of the most com- shown to be involved in the chromosome translocation t(8; mon human malignant neoplasms, with a particularly high 14) in human Burkett’s lymphoma[7].
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Datasheet: AHP1885 Product Details
    Datasheet: AHP1885 Description: RABBIT ANTI HUMAN BNIP3L Specificity: BNIP3L Format: Purified Product Type: Polyclonal Antibody Isotype: Polyclonal IgG Quantity: 0.1 mg Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Immunohistology - Paraffin (1) 2ug/ml Western Blotting 1ug/ml Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls. (1)This product requires antigen retrieval using heat treatment prior to staining of paraffin sections.Sodium citrate buffer pH 6.0 is recommended for this purpose. Target Species Human Species Cross Based on sequence similarity, is expected to react with:Mouse Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Antiserum Preparation Antiserum to human BNIP3L was raised by repeated immunisation of rabbits with highly purified antigen. Purified IgG was prepared from whole serum by affinity chromatography. Buffer Solution Phosphate buffered saline Preservative 0.02% Sodium Azide (NaN ) Stabilisers 3 Approx. Protein IgG concentration 0.5 mg/ml Concentrations Immunogen Synthetic peptide corresponding to the amino acids sequence 77 - 92 of human BNIP3L.
    [Show full text]
  • Identification of Genes and Signaling Pathways Associated with the Pathogenesis of Juvenile Spondyloarthritis
    MOLECULAR MEDICINE REPORTS 18: 1263-1270, 2018 Identification of genes and signaling pathways associated with the pathogenesis of juvenile spondyloarthritis ZHE WANG1,2*, YUDI HAN3*, ZHAOQING ZHANG4*, CUNFENG JIA4, QIANG ZHAO4, WEI SONG5, TAO CHEN6, YIFAN ZHANG7 and XIUHUI WANG8 1Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032; 2Department of Orthopedic Trauma, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011; 3Department of Plastic and Reconstructive Surgery, General Hospital of Chinese People's Liberation Army, Beijing 100853; 4Department of Spine Surgery, Zhangqiu People's Hospital, Jinan, Shandong 250200; 5School of Life Sciences, Shanghai University, Shanghai 200444; 6Department of Orthopedics, Fourth Hospital of Changsha, Changsha, Hunan 410006; 7Department of Rheumatism Immunity, People's Liberation Army General Hospital, Beijing 100700; 8Department of Orthopedics, Shanghai Zhoupu Hospital, Shanghai 201318, P.R. China Received October 19, 2017; Accepted February 20, 2018 DOI: 10.3892/mmr.2018.9136 Abstract. The aim of the present study was to identify key Introduction genes and signaling pathways associated with the pathogenesis of juvenile spondyloarthritis (JSA). The gene expression profile Spondyloarthritis (SpA) includes a group of immune-mediated dataset GSE58667, including data from 15 human whole blood inflammatory diseases with similar genetic and clinical mani- samples collected from 11 patients with JSA and four healthy festations, including ankylosing spondylitis (AS), psoriatic controls, was analyzed to identify differentially expressed genes arthritis (PsA) and juvenile SpA (JSA) (1,2). In particular, JSA (DEGs) associated with disease characteristics. Additionally, is a group of chronic inflammatory diseases associated with Gene Ontology term and Kyoto Encyclopedia of Genes and human leukocyte antigen B27, affecting children at ≤16 years Genomes pathway enrichment analyses of the DEGs were of age.
    [Show full text]
  • New Ligand for LAG-3 Vaccine Responses
    research highlights TRM CELLS In Cell, Chen and colleagues identify the dependent insulinotropic polypeptide Tissue adaptation fibrinogen family protein FGL1 as a major (GIP) signaling and the suppression Science https://doi.org/10.1126/science.aat6280 ligand for LAG-3. The FGL1–LAG-3 of myeloid cell inflammatory responses. (2018) interaction is conserved in human and Mice that lack expression of the GIP mouse, is specific to FGL1, involves the receptor specifically in myeloid cells Commensals and commensal-reactive fibrinogen-like domain of FGL1 and exhibit excessive weight gain, impaired the D1-D2 domain of LAG-3 and is glucose tolerance and dysregulation lymphocytes coexist at barrier tissues. In –/– Science, Belkaid and colleagues show that independent of MHC class II. Fgl1 mice of cold-induced adaptive thermogenesis develop spontaneous autoimmunity with when fed a high-fat diet. Lack of skin-resident commensal-specific T cells –/– –/– express a type 17 program associated with age. Similar to Lag3 mice, Fgl1 mice the GIP receptor leads to increased a poised type 2 program. Staphylococcus control the growth of inoculated tumors expression of the alarmin S100A8 epidermis–colonized mice develop long- better than wild-type mice do, in a manner by fat-resident myeloid cells. This + + lived, tissue-resident, S. epidermis–specific dependent on CD8 T cells and CD4 scenario leads to greater myelopoiesis, + T cells. Antibodies to LAG-3 are not neutrophilia and recruitment of CD8 memory T cells. S. epidermis–elicited –/– + + + + protective against tumors in the Fgl1 myeloid cells to fat depots than RORγ t CD4 TH17 cells and RORγ t CD8 Tc17 cells produce the type 2 cytokines IL-5 mice.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Development and Characterization of Immunogenic Genetically Engineered Mouse Models of Pancreatic Cancer
    Development and characterization of immunogenic genetically engineered mouse models of pancreatic cancer By Laurens J. Lambert MSc, Medical Biology Radboud University, 2014 Submitted to the Department of Biology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2020 © 2020 Massachusetts Institute of Technology. All rights reserved. Signature of Author………………………………………………………………………………. Laurens J. Lambert Department of Biology June 16, 2020 Certified by………..………………………………………………………………………………. Tyler Jacks David H. Koch Professor of Biology Investigator, Howard Hughes Medical Institute Thesis Supervisor Accepted by………………………………………………………………………………………. Stephen Bell Uncas and Helen Whitaker Professor of Biology Investigator, Howard Hughes Medical Institute Co-Director, Biology Graduate Committee 2 Development and characterization of immunogenic genetically engineered mouse models of pancreatic cancer By Laurens J. Lambert Submitted to the Department of Biology on June 16, 2020 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology Abstract Insights into mechanisms of immune escape have fueled the clinical success of immunotherapy in many cancers. However, pancreatic cancer has remained largely refractory to checkpoint immunotherapy. To uncover mechanisms of immune escape, we have characterized two preclinical models of immunogenic pancreatic ductal adenocarcinoma (PDAC). In order to dissect the endogenous antigen-specific T cell response in PDAC, lentivirus encoding the Cre recombinase and a tumor specific antigen LSL-G12D/+; flox/flox (SIINFEKL, OVA257-264) was delivered to Kras Trp53 (KP) mice. We demonstrate that KP tumors show distinct antigenic outcomes: a subset of PDAC tumors undergoes clearance or editing by a robust antigen-specific CD8+ T cell response, while a fraction undergo immune escape.
    [Show full text]
  • Investigation of the Association Between FGL1 Expression and Prognosis in Gastric Cancer Patients Mahnaz Saremi1*, Leila Moezzi2
    http://pmjournal.ir Original Article Autumn 2020, Volume 5, Issue 19 (7-9) Investigation of the Association between FGL1 Expression and Prognosis in Gastric Cancer Patients Mahnaz Saremi1*, Leila Moezzi2 1 Reference Health Laboratory, Ministry of Health and Medical Education 2 Department of Cellular and Molecular, Faculty of Life Sciences, North Tehran Branch, Islamic Azad University, Faculty of Biological Sciences, Tehran, Iran 2 Personalized Medicine Research Center of AmitisGen, Tehran, Iran *Corresponding author: Mahnaz Saremi, Reference Health Laboratory, Ministry of Health and Medical DOI: 10.22034/pmj.2020.240044 Education. Email: :[email protected] Submitted: 2020/05/23 Abstract Accepted: 2020/07/19 Gastric cancer is the fourth most common cancer worldwide, and it ranks second leading Keywords: cause of cancer deaths. Several studies have shown that FGL2 contributes to the patho- Gastric cancer genesis of a number of infectious diseases. However, little is known about its biological FGL2 gene functions in cancer development and metastasis. In this study, the association between gene expression FGL1 expression and prognosis was investigated in GC patients. Gastric cancer and ad- qPCR jacent normal tissues (n=20) were obtained from patients diagnosed with gastric cancer aged between 30 and 50. Total RNA was extracted, reverse transcription and qPCR were ©2020.Personalized Medicine Journal performed, and Relative expression level was calculated using the 2-∆∆Cq method. It was found that FGL1 expression in gastric cancer tissues was obviously higher than adjacent tissues at mRNA levels (P<0.003). IntroductIon effector molecule of Treg cells and plays a critical Gastric cancer is the fourth most common role in regulating innate immunity and adaptive cancer worldwide, and it ranks as the second immunity [7].
    [Show full text]
  • Bioinformatics Tools for the Analysis of Gene-Phenotype Relationships Coupled with a Next Generation Chip-Sequencing Data Processing Pipeline
    Bioinformatics Tools for the Analysis of Gene-Phenotype Relationships Coupled with a Next Generation ChIP-Sequencing Data Processing Pipeline Erinija Pranckeviciene Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Cellular and Molecular Medicine Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa c Erinija Pranckeviciene, Ottawa, Canada, 2015 Abstract The rapidly advancing high-throughput and next generation sequencing technologies facilitate deeper insights into the molecular mechanisms underlying the expression of phenotypes in living organisms. Experimental data and scientific publications following this technological advance- ment have rapidly accumulated in public databases. Meaningful analysis of currently avail- able data in genomic databases requires sophisticated computational tools and algorithms, and presents considerable challenges to molecular biologists without specialized training in bioinfor- matics. To study their phenotype of interest molecular biologists must prioritize large lists of poorly characterized genes generated in high-throughput experiments. To date, prioritization tools have primarily been designed to work with phenotypes of human diseases as defined by the genes known to be associated with those diseases. There is therefore a need for more prioritiza- tion tools for phenotypes which are not related with diseases generally or diseases with which no genes have yet been associated in particular. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) is a method of choice to study the gene regulation processes responsible for the expression of cellular phenotypes. Among publicly available computational pipelines for the processing of ChIP-Seq data, there is a lack of tools for the downstream analysis of composite motifs and preferred binding distances of the DNA binding proteins.
    [Show full text]
  • The Role of Fibrinogen-Like Proteins in Cancer
    The Role of Fibrinogen-Like Proteins in Cancer Jing Yu1,2#, Jing Li 3#, Jing Shen1,2, Fukuan Du1,2, Xu Wu1,2, Mingxing Li1,2, Yu Chen1,2, Chi Hin Cho1,2, Xiaobing Li1*, Zhangang Xiao1,2*, Yueshui Zhao1,2* 1. Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China 2. South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China 3. Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China. # These Authors Contributed Equally to This Work. *Addresses for Correspondent Authors: Yueshui Zhao, Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; E-mail: [email protected] Zhangang Xiao, Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; E-mail: [email protected] Xiaobing Li, Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; E-mail: [email protected] 1 Abstract Fibrinogen-associated protein (FREP) family is a family of proteins with a fibrin domain at the carboxyl terminus. Recent investigations illustrated that two members of FREP family, fibrinogen-like protein-1 (FGL1) and fibrinogen-like protein-2 (FGL2), play crucial roles in cancer by regulating the proliferation, invasion, and migration of tumor cells, or regulating the functions of immune cells in tumor microenvironment. Meanwhile, they are potential targets for medical intervention of tumor development. In this review, we discussed the structure, and the roles of FGL1 and FGL2 in tumors, especially the roles in regulating immune cell functions.
    [Show full text]
  • The Role of Fibrinogen-Like Proteins in Cancer
    Int. J. Biol. Sci. 2021, Vol. 17 1079 Ivyspring International Publisher International Journal of Biological Sciences 2021; 17(4): 1079-1087. doi: 10.7150/ijbs.56748 Review The role of Fibrinogen-like proteins in Cancer Jing Yu1,2#, Jing Li3#, Jing Shen1,2, Fukuan Du1,2, Xu Wu1,2, Mingxing Li1,2, Yu Chen1,2, Chi Hin Cho1,2, Xiaobing Li1, Zhangang Xiao1,2 and Yueshui Zhao1,2,4 1. Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China. 2. South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China. 3. Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China. 4. Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China. # These authors contributed equally to this work. Corresponding authors: Yueshui Zhao, Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University; South Sichuan Institute of Translational Medicine; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University; Luzhou, Sichuan 646000, China. E-mail: [email protected]; Zhangang Xiao, Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University; South Sichuan Institute of Translational Medicine; Luzhou, Sichuan 646000, China. E-mail: [email protected]; Xiaobing Li, Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China. E-mail: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
    [Show full text]