RESEARCH ARTICLE Structure of the human volume regulated anion channel Jennifer M Kefauver1,2, Kei Saotome1,2†, Adrienne E Dubin1†, Jesper Pallesen2, Christopher A Cottrell2, Stuart M Cahalan1‡, Zhaozhu Qiu3§#, Gunhee Hong1, Christopher S Crowley2,4, Tess Whitwam1, Wen-Hsin Lee2, Andrew B Ward2*, Ardem Patapoutian1* 1Department of Neuroscience, Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, United States; 2Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States; 3Genomics Institute of the Novartis Research Foundation, San Diego, United States; 4Department of Dermatology, University of California, San Diego, San Diego, United States *For correspondence:
[email protected] (ABW);
[email protected] (AP) Abstract SWELL1 (LRRC8A) is the only essential subunit of the Volume Regulated Anion Channel † (VRAC), which regulates cellular volume homeostasis and is activated by hypotonic solutions. These authors contributed equally to this work SWELL1, together with four other LRRC8 family members, potentially forms a vastly heterogeneous cohort of VRAC channels with different properties; however, SWELL1 alone is also functional. Here, ‡ Present address: Vertex we report a high-resolution cryo-electron microscopy structure of full-length human homo- Pharmaceuticals, San Diego, hexameric SWELL1. The structure reveals a trimer of dimers assembly with symmetry mismatch United States; §Department of between the pore-forming domain and the cytosolic leucine-rich repeat (LRR) domains. Importantly, Physiology, Johns Hopkins mutational analysis demonstrates that a charged residue at the narrowest constriction of the University School of Medicine, Baltimore, United States; homomeric channel is an important pore determinant of heteromeric VRAC. Additionally, a #Solomon H. Snyder Department mutation in the flexible N-terminal portion of SWELL1 affects pore properties, suggesting a of Neuroscience, Johns Hopkins putative link between intracellular structures and channel regulation.