JOURNAL of NEMATOLOGY First Report of Carrot Cyst

Total Page:16

File Type:pdf, Size:1020Kb

JOURNAL of NEMATOLOGY First Report of Carrot Cyst JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2018-021 Issue 0 | Vol. 0 First Report of Carrot Cyst Nematode Heterodera carotae in Mexico: Morphological, Molecular Characterization, and Host Range Study Ilia Mariana Escobar-Avila,1 Edgar Óliver López-Villegas,2 Sergei A. Abstract Subbotin3,4 and Alejandro Tovar-Soto1* During 2008 to 2016 in several nematological surveys in the Tepeaca Valley, Puebla, Mexico, populations of carrot cyst nematode, Heterodera 1Laboratorio de Nematología carotae was found parasitizing carrots, Daucus carota. The nematode Agrícola, Departamento de was present in 61% of the sampled fields with high population Parasitología, Escuela Nacional densities, causing severe carrot yield losses by this nematode in de Ciencias Biológicas, Instituto the Tepeaca Valley. The aim of this work was to study morphology, Politécnico Nacional, México, CP morphometrics, host range, and molecular characterization of the 11340. nematode. The morphological and morphometric characterization 2Central de Instrumentación de was made using light and scanning electron microscopy of the second Microscopía, Escuela Nacional de stage juveniles, female, male and cyst, and the host range study, was Ciencias Biológicas, Instituto performed using nine different plants from five families. The molecular Politécnico Nacional, México, identification was made by sequencing and analysing the ITS rRNA CP 11340. and partial COI genes. It was shown that using morphological and molecular tools it was not possible to make an accurate differentiation 3Plant Pests Diagnostic Center, of H. carotae from Heterodera cruciferae. The only test that allowed to California Department of Food and distinguish these species was the host range study. This is an example Agriculture. 3294 Meadowview Road, of importance of combination of several methods for the correct Sacramento, CA 95832. identification of cyst nematodes. To our knowledge, this is the first 4Center of Parasitology of A.N. report of H. carotae in Mexico. Severtsov Institute of Ecology and Evolution of the Russian Academy of Key words Sciences, 117071, Moscow, Russia. Carrot, COI gene, Daucus carota, Morphometrics, Phylogeny, ITS *E-mail: [email protected]. rRNA gene. The carrot cyst nematode Heterodera carotae is a carrots at national level with an annual production of highly specialized parasite infecting only wild and cul- 75,950 t (SIAP, 2017). The Tepeaca Valley in this state is tivated carrots (Daucus carota L.) and an herbaceous known as an important vegetable producing area and plant known as the hedge parsley (Torilis leptophylla L.) it is constituted by 13 municipalities. In 2008 to 2016 (Jones, 1950b; Mugniery and Bossis, 1988). This during several nematological surveys in six munici- nematode might cause serious problem in the carrot palities of the Tepeaca Valley, white females of a cyst growing areas in Italy leading to yield loss around nematode of the genus Heterodera parasitizing carrot 20% to90% in carrots (Greco et al., 1994). Distribu- roots were found in 61% of sampled fields (Tovar-Soto tion of this nematode is mostly restricted to Europe et al., 2009, 2010; Escobar-Avila et al., 2017). In this and South Africa, however, in North America it has study, the cyst nematode was identified asH. carotae. been found in Ontario, Canada, and Michigan, United Although carrot yield losses caused by this nematode States (Graney, 1985; Berney and Bird, 1992; Subbotin is not exactly estimated, however, the growers have et al., 2010; Madani et al., 2017; Yu et al., 2017). In 2016, been forced to stop sowing carrots where the nema- the Puebla State of Mexico was the first producer of tode is present. The aim of this work was to conduct 1 © The Society of Nematologists 2018. First Report of Carrot Cyst Nematode Heterodera carotae in Mexico: Morphological, Molecular Characterization morphological, morphometrics, host-range, and in different concentrations of ethanol (30%–100%). molecular studies of H. carotae from Mexico. Samples were critical point dried and coated with gold palladium for its analysis in a scanning electron Materials and methods microscope (Shepherd and Clark, 1986). The anterior region of the different nematode stages was observed and from the J2 and males the number of Nematode population incisures in the lateral field were counted. Soil with nematodes collected from an infested carrot field from Santa Maria Actipan, Acatzingo, Puebla, Mexico Host range study (18˚ 58¢ 486² N; 97˚ 50¢ 295² W; 2246 masl) was used Nine plant species from five families, which are known to establish a laboratory culture. The nematode cul- as hosts from H. carotae and H. cruciferae were ture was maintained in the greenhouse at 20 to 25°C. used in the test: Apiaceae, carrot (Daucus carota L.); Two plastic plots were filled with 15 kg of soil, then 50 Asteraceae, lettuce (Lactuca sativa L.); Brassicaceae, seeds of carrot cv. Christian were sown. After 54 days, broccoli (Brassica oleracea var. italica L.), cabbage one plot was used for the extraction of second stage (B. oleracea var. capitata L.), cauliflower (B. oleracea juveniles (J2) and males by the centrifugal flotation tech- var. botrytis L.), radish (Raphanus sativus L.) and nique (Jenkins, 1964). After 65 days, the other plot was Brussels sprouts (B. oleracea var. gemmifera L.); used to obtain females, the roots were separated, gently Chenopodiaceae, beetroot (Beta vulgaris L.), and washed, and put in a Petri dish for its examination under Poaceae, wheat (Triticum aestivum L.) (Goodey et al., Motic stereoscopic microscope. Females were sepa- 1959; Mugniery and Bossis, 1988; Evans and Russell, rated using a brush and kept at 5°C until use. Females 1993). Plants growing in pots with 3 kg of steri- were used for morphology and morphometry. The cysts lized soil were inoculated with 12,000 eggs and J2. were extracted by the Fenwick method (Fenwick, 1940). Each plant species was tested in three replicates. After 70 days, the plants were removed and carefully Light microscopy washed with tap water, the roots were examined Males and J2 were killed in a bath at 65°C for 5 min, under a stereoscopic microscope for the search of fixed with a mixture of ethanol, acetic acid, and for- white females and cysts. Then roots were stained by malin (20:6:1) and processed into glycerin and the the acid fuchsin lactoglycerol technique to observe specimens were mounted in permanent slides with nematode stages inside of roots (Bybd et al., 1983). anhydrous glycerin and paraffin seal for examination If white females or cysts where found on roots, the (S’Jacob and Van Bezooijen, 1984; Southey, 1986). plant was considered as a host. The measures were taken for length, width at mid body, stylet length, labial region height and width, dor- Molecular characterization sal oesophageal gland to spear knobs base, anterior end to median bulb, anterior end to excretory pore, DNA was extracted from single cysts of H. carotae oesophageal length, width at anus and hyaline re- fixed in ethanol. Protocols for DNA extraction, poly- gion, tail length, hyaline part of tail length, and spicules merase chain recaction (PCR), cloning and sequenc- length (males) (S’Jacob and Van Bezooijen, 1984; ing were described as in Tanha Maafi et al. (2003) Southey, 1986). For the observation of the vulval cone, and Subbotin (2015). The forward primer TW81 cysts were soaked in lactic acid 45% for 15 min, trans- (5¢-GTT TCC GTA GGT GAA CCT GC-3¢) and the re- ferred to water and then, the posterior region was dis- verse primer AB28 (5¢-ATA TGC TTA AGT TCA GCG sected and mounted in glycerin with paraffin seal for its GGT-3¢) (Tanha Maafi et al., 2003) were used for ampli- observation and analysis, (S’Jacob and Van Bezooijen, fication of the ITS1-5.8S-ITS2 of rRNA and the forward 1984; De la Jara-Alcocer et al., 1994). The measure- Het-coxiF (5¢-TAG TTG ATC GTA ATT TTA ATG G 3¢) ments taken were vulval slit length, fenestral length, and the reverse Het-coxiR (5¢- CCT AAA ACA TAA and width. All measurements were made on Olympus TGA AAA TGW GC-3¢) (Subbotin, 2015) was used for CX31 microscope with Infinity Analyze software v6.5.2. amplification of the partialCOI mtDNA gene. For COI gene study the sequences of H. carotae from Italy, Scanning electron microscopy France, Switzerland and H. cruciferae from Russia, Moscow region and USA, California were also J2, females, males and cysts were processed. The included. The new sequences were deposited in the nematode phases were fixed in 4% glutaraldehyde, GenBank under accession numbers: MG563227 to post fixed in 1% osmium tetraoxide, and dehydrated M G 56 3237. 2 JOURNAL OF NEMATOLOGY The newly obtained ITS rRNA and COI gene se- indistinct postlabial annuli. Spicules bidentate (Table 1; quences were aligned with corresponding published Figs. 3C,D; 4D, E). sequences of species from the Goettingiana group (Subbotin et al., 2001; Tanha Maafi et al., 2003; Chizhov Second stage juveniles et al., 2009; Toumi et al., 2013; Madani et al., 2017; Vovlas et al., 2017 and others) using ClustalX 1.83 with Vermiform, anterior region heavily sclerotized, strong default parameters. The sequence datasets were ana- stylet well developed. Tail acutely conical with round- lysed with Bayesian inference (BI) using MrBayes 3.1.2 ed tip usually with the presence of 1-3 spherical re- (Huelsenbeck and Ronquist, 2001) under the HKY+G fractive body sometimes with associated swelling. model for COI and GTR+G+I model for ITS rRNA gene Lateral field with four incisures forming three bands as they were obtained using jModeltest 0.1.1 (Posada, (Table 1; Figs. 3E,F; 4A–C). 2008). BI analysis was initiated with a random starting The species of Heterodera found in the Tepeaca tree and was run with four chains for 1.0 × 106 genera- Valley, Puebla, Mexico and parasitizing carrots has tions.
Recommended publications
  • JOURNAL of NEMATOLOGY Description of Heterodera
    JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2020-097 e2020-97 | Vol. 52 Description of Heterodera microulae sp. n. (Nematoda: Heteroderinae) from China a new cyst nematode in the Goettingiana group Wenhao Li1, Huixia Li1,*, Chunhui Ni1, Deliang Peng2, Yonggang Liu3, Ning Luo1 and Abstract 1 Xuefen Xu A new cyst-forming nematode, Heterodera microulae sp. n., was 1College of Plant Protection, Gansu isolated from the roots and rhizosphere soil of Microula sikkimensis Agricultural University/Biocontrol in China. Morphologically, the new species is characterized by Engineering Laboratory of Crop lemon-shaped body with an extruded neck and obtuse vulval cone. Diseases and Pests of Gansu The vulval cone of the new species appeared to be ambifenestrate Province, Lanzhou, 730070, without bullae and a weak underbridge. The second-stage juveniles Gansu Province, China. have a longer body length with four lateral lines, strong stylets with rounded and flat stylet knobs, tail with a comparatively longer hyaline 2 State Key Laboratory for Biology area, and a sharp terminus. The phylogenetic analyses based on of Plant Diseases and Insect ITS-rDNA, D2-D3 of 28S rDNA, and COI sequences revealed that the Pests, Institute of Plant Protection, new species formed a separate clade from other Heterodera species Chinese Academy of Agricultural in Goettingiana group, which further support the unique status of Sciences, Beijing, 100193, China. H. microulae sp. n. Therefore, it is described herein as a new species 3Institute of Plant Protection, Gansu of genus Heterodera; additionally, the present study provided the first Academy of Agricultural Sciences, record of Goettingiana group in Gansu Province, China.
    [Show full text]
  • Plant-Parasitic Nematodes and Their Management: a Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.8, No.1, 2018 Plant-Parasitic Nematodes and Their Management: A Review Misgana Mitiku Department of Plant Pathology, Southern Agricultural Research Institute, Jinka, Agricultural Research Center, Jinka, Ethiopia Abstract Nowhere will the need to sustainably increase agricultural productivity in line with increasing demand be more pertinent than in resource poor areas of the world, especially Africa, where populations are most rapidly expanding. Although a 35% population increase is projected by 2050. Significant improvements are consequently necessary in terms of resource use efficiency. In moving crop yields towards an efficiency frontier, optimal pest and disease management will be essential, especially as the proportional production of some commodities steadily shifts. With this in mind, it is essential that the full spectrums of crop production limitations are considered appropriately, including the often overlooked nematode constraints about half of all nematode species are marine nematodes, 25% are free-living, soil inhabiting nematodes, I5% are animal and human parasites and l0% are plant parasites. Today, even with modern technology, 5-l0% of crop production is lost due to nematodes in developed countries. So, the aim of this work was to review some agricultural nematodes genera, species they contain and their management methods. In this review work the species, feeding habit, morphology, host and symptoms they show on the effected plant and management of eleven nematode genera was reviewed.
    [Show full text]
  • Inventory and Review of Quantitative Models for Spread of Plant Pests for Use in Pest Risk Assessment for the EU Territory1
    EFSA supporting publication 2015:EN-795 EXTERNAL SCIENTIFIC REPORT Inventory and review of quantitative models for spread of plant pests for use in pest risk assessment for the EU territory1 NERC Centre for Ecology and Hydrology 2 Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, UK ABSTRACT This report considers the prospects for increasing the use of quantitative models for plant pest spread and dispersal in EFSA Plant Health risk assessments. The agreed major aims were to provide an overview of current modelling approaches and their strengths and weaknesses for risk assessment, and to develop and test a system for risk assessors to select appropriate models for application. First, we conducted an extensive literature review, based on protocols developed for systematic reviews. The review located 468 models for plant pest spread and dispersal and these were entered into a searchable and secure Electronic Model Inventory database. A cluster analysis on how these models were formulated allowed us to identify eight distinct major modelling strategies that were differentiated by the types of pests they were used for and the ways in which they were parameterised and analysed. These strategies varied in their strengths and weaknesses, meaning that no single approach was the most useful for all elements of risk assessment. Therefore we developed a Decision Support Scheme (DSS) to guide model selection. The DSS identifies the most appropriate strategies by weighing up the goals of risk assessment and constraints imposed by lack of data or expertise. Searching and filtering the Electronic Model Inventory then allows the assessor to locate specific models within those strategies that can be applied.
    [Show full text]
  • Observations on the Genus Doronchus Andrássy
    Vol. 20, No. 1, pp.91-98 International Journal of Nematology June, 2010 Occurrence and distribution of nematodes in Idaho crops Saad L. Hafez*, P. Sundararaj*, Zafar A. Handoo** and M. Rafiq Siddiqi*** *University of Idaho, 29603 U of I Lane, Parma, Idaho 83660, USA **USDA-ARS-Nematology Laboratory, Beltsville, Maryland 20705, USA ***Nematode Taxonomy Laboratory, 24 Brantwood Road, Luton, LU1 1JJ, England, UK E-mail: [email protected] Abstract. Surveys were conducted in Idaho, USA during the 2000-2006 cropping seasons to study the occurrence, population density, host association and distribution of plant-parasitic nematodes associated with major crops, grasses and weeds. Eighty-four species and 43 genera of plant-parasitic nematodes were recorded in soil samples from 29 crops in 20 counties in Idaho. Among them, 36 species are new records in this region. The highest number of species belonged to the genus Pratylenchus; P. neglectus was the predominant species among all species of the identified genera. Among the endoparasitic nematodes, the highest percentage of occurrence was Pratylenchus (29.7) followed by Meloidogyne (4.4) and Heterodera (3.4). Among the ectoparasitic nematodes, Helicotylenchus was predominant (8.3) followed by Mesocriconema (5.0) and Tylenchorhynchus (4.8). Keywords. Distribution, Helicotylenchus, Heterodera, Idaho, Meloidogyne, Mesocriconema, population density, potato, Pratylenchus, survey, Tylenchorhynchus, USA. INTRODUCTION and cropping systems in Idaho are highly conducive for nematode multiplication. Information concerning the revious reports have described the association of occurrence and distribution of nematodes in Idaho is plant-parasitic nematode species associated with important to assess their potential to cause economic damage P several crops in the Pacific Northwest (Golden et al., to many crop plants.
    [Show full text]
  • Weed Risk Assessment for Torilis Leptophylla (L.) Rchb. F. (Apiaceae)
    Weed Risk Assessment for Torilis United States leptophylla (L.) Rchb. f. (Apiaceae) – Department of Bristlefruit hedgeparsley Agriculture Animal and Plant Health Inspection Service March 22, 2017 Version 1 Left: Herbarium sample of the inflorescence of T. leptophylla [image obtained from the Missouri Botanical Garden under CC-BY-NC-SA 3.0 (MBG, 2017)]. Right: Detailed drawing of the fruit showing the barbs at the end of the spines (source: Reed, 1977). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Torilis leptophylla Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use the PPQ weed risk assessment (WRA) process (PPQ, 2015) to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. The PPQ WRA process includes three analytical components that together describe the risk profile of a plant species (risk potential, uncertainty, and geographic potential; PPQ, 2015).
    [Show full text]
  • Histopathology of Brassica Oleracea Var. Capitata Subvar
    Türk. entomol. derg., 2012, 36 (3): 301-309 ISSN 1010-6960 Orijinal araştırma (Original article) Histopathology of Brassica oleracea var. capitata subvar. alba infected with Heterodera cruciferae Franklin, 1945 (Tylenchida: Heteroderidae) Heterodera cruciferae Franklin, 1945 (Tylenchida: Heteroderidae) ile bulaşık Brassica oleracea var. capitata subvar. alba`nın histopatojisi Sevilhan MENNAN1* Zafar A. HANDOO2 Summary Anatomical changes induced by the cabbage cyst nematode (Heterodera cruciferae) have been insufficiently characterized. Here these changes were described in the root tissues of white head cabbage variety (Yalova F1) commonly grown in the Black Sea region of Turkey, where cabbage-growing areas are heavily infested. In glasshouse experiments conducted at 20 degrees C, susceptible white head cabbage seedlings were inoculated with 0 (untreated control) or 1000 juveniles/300 ml soil. Three, 6, 12, 24, 48, 72 h and 30 days after inoculations, two plants from each treatment were removed, embedded in paraffin by using microwave technique and then examined by photomicrography. Second-stage passed through the vascular system after root penetration and they started to feed as sedentary. In cross section of the roots, large cells in the cortex of infected plants were filled with moderately dense cytoplasm and the walls were heavily stained and ruptured. In longitudinal section, internal walls were perforated. Syncytia that had different degrees of vacuolization, and syncytial nuclei were hypertrophied and deeply indented. Contained conspicuous nucleoli were noticeable 24 h after inoculation. Syncytia originating from endodermal cells possessed ruptured walls around the feeding site of the developing juvenile. White females were observed on the roots 30 days after inoculation, a time at which plant height was reduced and root proliferation increased.
    [Show full text]
  • Molecular Characterization of Cyst Nematode Species (Heterodera Spp.) from the Mediterranean Basin Using Rflps and Sequences of ITS-Rdna
    J. Phytopathology 152, 229–234 (2004) Ó 2004 Blackwell Verlag, Berlin ISSN 0931-1785 Crop Protection Department, Agricultural Research Centre, Merelbeke, Belgium Molecular Characterization of Cyst Nematode Species (Heterodera spp.) from the Mediterranean Basin using RFLPs and Sequences of ITS-rDNA M.Madani 1, N.Vovlas 2, P.Castillo 3, S. A.Subbotin 4 and M.Moens 1,51,5 AuthorsÕ addresses: 1Crop Protection Department, Agricultural Research Centre, Burg, Van Gansberghelaan 96, 9820 Merelbeke, Belgium; 2Istituto per la Protezione delle Piante, Sezione di Bari: Nematologia Agraria, Consiglio Nazionale delle Ricerche (C.N.R.), Via G. Amendola 165/A, 70126 Bari, Italy; 3Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Cientificas (C.S.I.C.), Apdo. 4084, 14080 Cordoba, Spain; 4Institute of Parasitology of the Russian Academy of Sciences, Leninskii Prospect 33, Moscow 119071, Russia; 5University of Gent, Laboratory for Agrozoology, Coupure 555, 9000 Gent, Belgium (correspondence to S. A. Subbotin. E-mail: [email protected]) With 2 figures Received August 6, 2003; accepted February 11, 2004 Keywords: Heterodera carotae, Heterodera ciceri, Heterodera fici, Heterodera filipjevi, Heterodera goettingiana, Heterodera hordecalis, Heterodera humuli, Heterodera mediterranea, Heterodera ripae, Heterodera schachtii, internal transcribed spacer region, phylogenetic relationships, molecular identification Abstract plant growth and yield may be suppressed (Baldwin Fifteen populations of cyst-forming nematodes belong- and Mundo Ocampo, 1991). ing to 11 known and one unidentified species collected Currently, the genus Heterodera contains more than in countries bordering the Mediterranean Sea were 60 species (Wouts and Baldwin, 1998). In the Mediterra- studied using polymerase chain reaction restriction nean Basin several cyst nematode species have been fragment length polymorphism (PCR–RFLP) and reported on herbaceous and woody plants (Greco and internal transcribed spacer (ITS)-rDNA sequences.
    [Show full text]
  • Brassica Spp.) – 151
    II.3. BRASSICA CROPS (BRASSICA SPP.) – 151 Chapter 3. Brassica crops (Brassica spp.) This chapter deals with the biology of Brassica species which comprise oilseed rape, turnip rape, mustards, cabbages and other oilseed crops. The chapter contains information for use during the risk/safety regulatory assessment of genetically engineered varieties intended to be grown in the environment (biosafety). It includes elements of taxonomy for a range of Brassica species, their centres of origin and distribution, reproductive biology, genetics, hybridisation and introgression, crop production, interactions with other organisms, pests and pathogens, breeding methods and biotechnological developments, and an annex on common pathogens and pests. The OECD gratefully acknowledges the contribution of Dr. R.K. Downey (Canada), the primary author, without whom this chapter could not have been written. The chapter was prepared by the OECD Working Group on the Harmonisation of Regulatory Oversight in Biotechnology, with Canada as the lead country. It updates and completes the original publication on the biology of Brassica napus issued in 1997, and was initially issued in December 2012. Data from USDA Foreign Agricultural Service and FAOSTAT have been updated. SAFETY ASSESSMENT OF TRANSGENIC ORGANISMS: OECD CONSENSUS DOCUMENTS, VOLUME 5 © OECD 2016 152 – II.3. BRASSICA CROPS (BRASSICA SPP.) Introduction The plants within the family Brassicaceae constitute one of the world’s most economically important plant groups. They range from noxious weeds to leaf and root vegetables to oilseed and condiment crops. The cole vegetables are perhaps the best known group. Indeed, the Brassica vegetables are a dietary staple in every part of the world with the possible exception of the tropics.
    [Show full text]
  • Rapid Identification of Cyst (Heterodera Spp., Globodera Spp
    MEC995.fm Page 1223 Saturday, August 12, 2000 3:15 PM Molecular Ecology (2000) 9, 1223–1232 RapidBlackwell Science, Ltd identification of cyst (Heterodera spp., Globodera spp.) and root-knot (Meloidogyne spp.) nematodes on the basis of ITS2 sequence variation detected by PCR-single-strand conformational polymorphism (PCR-SSCP) in cultures and field samples J. P. CLAPP,* C. D. VAN DER STOEL† and W. H. VAN DER PUTTEN† *Department of Biosciences, The University of Kent, Canterbury CT2 7NJ, UK, †Department of Multi-trophic Interactions, Netherlands Institute of Ecology, Centre for Terrestrial Ecology, Postbus 40, 6666 ZG, Heteren, The Netherlands Abstract Cyst and root-knot nematodes show high levels of gross morphological similarity. This presents difficulties for the study of their ecology in natural ecosystems. In this study, cyst and root-knot nematode species, as well as some ectoparasitic nematode species, were identified using the second internal transcribed spacer (ITS2) sequence variation detected by polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP). The ITS2 region was sufficiently variable within the taxa investigated to allow species to be separated on the basis of minor sequence variation. The PCR primers used in this study were effective for 12 species with three genera within the Heteroderinae (Globodera pallida, G. rostochiensis, Heterodera arenaria/avenae, H. ciceri, H. daverti, H. hordecalis, H. mani, H. schachtii, H. trifolii, Meloidogyne ardenensis, M. duytsi and M. maritima). However, pathotypes of Globodera pallida and G. rostochiensis could not be distinguished. The method was tested at two coastal dune locations in The Netherlands (one in the lime- poor dunes of the north and one in calcareous dunes of the south) to determine the popu- lation structure of cyst nematodes.
    [Show full text]
  • Plant-Parasitic Nematodes in Germany – an Annotated Checklist
    86 (3) · December 2014 pp. 177–198 Plant-parasitic nematodes in Germany – an annotated checklist Dieter Sturhan Arnethstr. 13D, 48159 Münster, Germany, and c/o Julius Kühn-Institut, Toppheideweg 88, 48161 Münster, Germany E-mail: [email protected] Received 15 September 2014 | Accepted 28 October 2014 Published online at www.soil-organisms.de 1 December 2014 | Printed version 15 December 2014 Abstract A total of 268 phytonematode species indigenous in Germany or more recently introduced and established outdoors are listed. Their current taxonomic status and classification is given, which is not always in agreement with that applied in Fauna Europaea or recent publications. Recently used synonyms are included and comments on the species status are sometimes added. Species originally described from Germany are particularly marked, presence of types and other voucher specimens in the German Nematode Collection - Terrestrial Nematodes (DNST) is indicated; likewise potential occurrence or absence of species in field soil and similar cultivated land is noted. Species known from indoor plants and only occasionally observed outdoors are listed separately. Synonymies and species considered as species inquirendae are listed in case records refer to Germany; records and identifications considered as doubtful are also listed. In a separate section notes on a number of genera and species are added, taxonomic problems are indicated, and data on morphology, distribution and habitat of some recently discovered species and of still unidentified or undescribed species or populations are given. Longidorus macroteromucronatus is synonymised with L. poessneckensis. Paratrophurus striatus is transferred as T. casigo nom. nov., comb. nov. to the genus Tylenchorhynchus. Neotypes of Merlinius bavaricus and Bursaphelenchus fraudulentus are designated.
    [Show full text]
  • Succession of Nematodes During Composting Processess and Their Potential As Indicators of Compost Maturity
    Succession of nematodes during composting processess and their potential as indicators of compost maturity Hanne Steel Promoters: Prof. dr. Wim Bert (UGent) Prof. dr. Tom Moens (UGent) Thesis submitted to obtain the degree of doctor in Sciences, Biology Proefschrift voorgelegd tot het bekomen van de graad van doctor in de Wetenschappen, Biologie Dit werk werd mogelijk gemaakt door een beurs van het Fonds Wetenschappelijk Onderzoek- Vlaanderen (FWO) This work was supported by a grant of the Foundation for Scientific Research, Flanders (FWO) 3 Reading Committee: Prof. dr. Deborah Neher (University of Vermont, USA) Dr. Thomaé Kakouli-Duarte (Institute of Technology Carlow, Ireland) Prof. dr. Magda Vincx (Ghent University, Belgium) Dr. Eduardo de la Peña (Ghent University, Belgium) Examination Committee: Prof. dr. Koen Sabbe (chairman, Ghent University, Belgium) Prof. dr. Wim Bert (secretary, promotor, Ghent University, Belgium) Prof. dr. Tom Moens (promotor, Ghent University, Belgium) Prof. dr. Deborah Neher (University of Vermont, USA) Dr. Thomaé Kakouli-Duarte (Institute of Technology Carlow, Ireland) Prof. dr. Magda Vincx (Ghent University, Belgium) Prof. dr. Wilfrida Decraemer (Royal Belgian Institute of Natural Sciences, Belgium) Dr. Eduardo de la Peña (Ghent University, Belgium) Dr. Ir. Bart Vandecasteele (Institute for Agricultural and Fisheries Research, Belgium) 5 Acknowledgments Eindelijk is het zover! Ik mag mijn dankwoord schrijven, iets waar ik stiekem al heel lang naar uitkijk en dat alleen maar kan betekenen dat mijn doctoraat bijna klaar is. JOEPIE! De voorbije 5 jaar waren zonder twijfel leuk, leerrijk en ontzettend boeiend. Maar… jawel doctoreren is ook een project van lange adem, met vallen en opstaan, met zin en tegenzin, met geluk en tegenslag, met fantastische hoogtes maar soms ook laagtes….Nu ik er zo over nadenk en om in een vertrouwd thema te blijven: doctoreren verschilt eigenlijk niet zo gek veel van een composteringsproces, dat bij voorkeur trouwens ook veel adem (zuurstof) ter beschikking heeft.
    [Show full text]
  • Morphological and Molecular Identification of Cereal Cyst Nematodes from the Eastern Mediterranean Region of Turkey
    Turkish Journal of Agriculture and Forestry Turk J Agric For (2015) 39: 91-98 http://journals.tubitak.gov.tr/agriculture/ © TÜBİTAK Research Article doi:10.3906/tar-1404-56 Morphological and molecular identification of cereal cyst nematodes from the eastern Mediterranean region of Turkey 1, 2 2 3 4 Mustafa İMREN *, Lieven WAEYENBERGE , Nicole VIAENE , İbrahim Halil ELEKCİOĞLU , Abdelfattah DABABAT 1 Department of Plant Protection, Faculty of Agriculture and Natural Science, Abant İzzet Baysal University, Bolu, Turkey 2 Agricultural Research Centre Burg, Ghent, Belgium 3 Department of Plant Protection, Faculty of Agriculture, Çukurova University, Adana, Turkey 4 International Maize and Wheat Improvement Center, Ankara, Turkey Received: 10.04.2014 Accepted: 27.09.2014 Published Online: 02.01.2015 Printed: 30.01.2015 Abstract: The morphological and molecular characteristics of 41 populations of cereal cyst nematodes (Heterodera avenae group) collected in Adana, Osmaniye, Kahramanmaraş, Hatay, Gaziantep, and Kilis provinces in the eastern Mediterranean region of Turkey were studied. The morphological characters and morphometric features of second-stage juveniles and cysts showed the presence of 3 Heterodera species: H. avenae, H. filipjevi, and H. latipons. All morphological values of these distinct populations were very similar to those previously described for these species. Genetic variation was observed among the identified cyst nematode species H. avenae, H. filipjevi, and H. latipons. Intraspecific polymorphism was observed within H. avenae and H. latipons but not in H. filipjevi populations. Molecular analysis using ITS regions of rDNA confirmed the identities of the 3 Heterodera species. According to our results, 75% of isolates were identified as H. avenae, 15% as H.
    [Show full text]