Molecules and Cells Insight into Structural Aspects of Histidine 284 of Daphnia magna Arginine Kinase Zhili Rao1,4, So Young Kim1,4, Xiaotong Li1, Da Som Kim1, Yong Ju Kim2,3,*, and Jung Hee Park1,3,* 1Division of Biotechnology, College of Environmental & Bioresources Sciences, Jeonbuk National University, Iksan 54596, Korea, 2Department of Herbal Medicine Resources, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Korea, 3Advanced Institute of Environment and Bioscience, College of Environmental & Bioresources Sciences, Jeonbuk National University, Iksan 54596, Korea, 4These authors contributed equally to this work. *Correspondence:
[email protected] (YJK);
[email protected] (JHP) https://doi.org/10.14348/molcells.2020.0136 www.molcells.org Arginine kinase (AK), a bioenergy-related enzyme, is INTRODUCTION distributed widely in invertebrates. The role of highly conserved histidines in AKs is still unascertained. In this study, Phosphagen kinases (PKs) are a family of phosphotransfer- the highly conserved histidine 284 (H284) in AK of Daphnia ases that reversibly catalyze the delivery of high-energy phos- magna (DmAK) was replaced with alanine to elucidate the phoryl groups between ATP and guanidine derivatives. The role of H284. We examined the alteration of catalytic activity phosphorylated guanidines, also known as phosphagens, are and structural changes of H284A in DmAK. The catalytic a type of high-energy compounds that play an important role activity of H284A was reduced dramatically compared to in cellular energy homeostasis in both the muscles and the that in wild type (WT). Thus the crystal structure of H284A brain by providing a way to store high-energy phosphates displayed several structural changes, including the alteration as a metastable compound (Ellington, 2001).