A Guide to Polyolefin Blow Molding Z Bellows-Shaped Shields and Doublewall Instrument and Tool Carrying Cases

Total Page:16

File Type:pdf, Size:1020Kb

A Guide to Polyolefin Blow Molding Z Bellows-Shaped Shields and Doublewall Instrument and Tool Carrying Cases A Guide to Polyolefin Blow Molding z Bellows-shaped shields and doublewall instrument and tool carrying cases. Polyolefins for Blow Molding H H This book contains extensive Polyolefins are the most widely used information on polyolefin blow molding; plastic for blow molding. This book, “A C = C however, it makes no specific Guide to Polyolefin Blow Molding,” recommendations for the processing of contains general information LyondellBasell Chemicals’ resins for H H concerning materials, methods and specific applications. For more detailed equipment for producing high quality information, please contact your polyolefin blow molded products at LyondellBasell polyolefins sales optimum production rates. Figure 1. Ethylene monomer representative. molecular structure Blow-Moldable Polyolefins and Other Products from LyondellBasell Applications Chemicals offers an extensive range of Polyolefins that can be blow polyolefin resins, plus polyolefin-based molded include: tie-layer resins not only for blow z Low density polyethylene (LDPE) molding, but also for: z Linear low density polyethylene (LLDPE) z Injection Molding z Medium density polyethylene z Film Extrusion (MDPE) z Extrusion Coating z High density polyethylene (HDPE) z Sheet and Profile Extrusion z Ethylene copolymers, such as H H H H H H H H H H z Wire and Cable Coating ethylene vinyl acetate (EVA) z Rotational Molding and Powder z Polypropylene and propylene coating C C C C C C C C C C copolymers (PP) z Blending and Compounding In general, the advantages of z Flame Retardant Applications H H H H H H H H H H polyolefin blow molding resins are good z Pipe processability, light weight, good toughness, outstanding chemical LyondellBasell also produces Figure 2. Polyethylene molecular resistance and relatively low cost ethyl alcohol, ethyl ether, ethylene glycol and ethylene oxide. Information on all these chain. compared to other plastics. products also can be obtained from your Furthermore, the basic properties of LyondellBasell sales representative. polyolefins can be modified to cover a broad range of end use properties. Polyolefins can also be coextruded with various other polymers, including Polyolefins are ethylene vinyl alcohol (EVOH), nylon Thermoplastics Derived from and tie-layers, to produce multilayer containers with improved barrier Petrochemicals properties. Polyolefins are plastic resins Major application areas for polymerized from petroleum-based polyolefin in blow molded products gases. The two principal gases are H H include: ethylene and propylene: Ethylene is the principal raw material for making H H–C–H H H H H–C–H z Packaging for such products as milk and other foods, cleaning polyethylene and ethylene copolymer resins; propylene is the main ingredient C C C C C C fluids, medicines, cosmetics and personal care products for making polypropylene and propylene copolymer resins. H H H H–C–H H H z Automotive items, such as gas tanks, oil bottles and windshield Polyolefin resins are classified as thermoplastics, which means that they H fluid containers, air ducts and seat backs can be melted, solidified and melted z Consumer products, including toys, again. This contrasts with thermoset housewares and sporting goods resins which, once molded, can not be reprocessed. Figure 3. Polypropylene molecular z Objects for materials handling, including 55-gallon drums and Polyolefin resins for blow molding chain. chemical carboys generally are produced in pellet form. z Industrial products, such as The pellets are about one-eighth inch business machine fluid containers, long and one-eighth inch in diameter and are usually somewhat translucent 1 and water-white in color. Polyolefin molecular network where oxidation may resins sometimes will contain additives, occur. In some processing techniques such as thermal stabilizers. They can where high temperatures are reached, also be compounded with colorants, oxidation can adversely affect the antistats, UV stabilizers, etc. to meet polymer’s properties. specific end-use needs. Density Effects of Molecular Structure Polyolefin blow molded products The uses for polyolefin resins are have a mixture of crystalline and primarily determined by three basic amorphous areas. Molecular chains in properties. These are: crystalline areas are arranged somewhat parallel to each other. In z Average Molecular Weight amorphous areas, they are randomly z Molecular Weight Distribution arranged. This mixture of crystalline z Crystallinity, or Density and amorphous regions (Fig. 5) is necessary for the proper balance of These properties are essentially properties in good blow molded fixed by the catalyst technology and products. A totally amorphous polyolefin manufacturing process used to produce would be grease-like and have poor a specific grade of resin. physical properties; a totally crystalline The basic building blocks for the gases polymer would be very hard and brittle. from which polyolefins are derived are HDPE resins have molecular chains hydrogen and carbon atoms. For with comparatively few side branches. polyethylene, these atoms are Therefore, the molecular chains are combined to form the ethylene packed more closely together. The Figure 4. Polyethylene chain with monomer, CA, i.e., two carbon atoms result is crystallinity up to 95%. LDPE side branches. and four hydrogen atoms (see Fig. 1). resins generally are 60 to 75% In the polymerization process, the crystalline, while LLDPE resins’ double bond connecting the carbon crystallinity levels range from 60 to atoms is broken. Under the right 85%. PP resins are highly crystalline, conditions, these bonds reform with but they are not very dense. For other ethylene molecules to form long polyethylene, the higher the crystallinity, molecular chains (Fig. 2). The resulting the higher the resin density. Density is a product is polyethylene resin. primary indicator of the level of For polypropylene, the hydrogen crystallinity in a polyethylene. and carbon atoms are combined to Polyolefin blow molding resins have the form the propylene monomer, following density ranges: CH3CH:CH2, which has three carbon atoms and six hydrogen atoms (Fig. 3). • LLDPE resins have densities The third carbon atom remains pendant ranging from 0.910 to 0.940 grams and spirals regularly around the per cubic centimeter (g/CM3). backbone chains. • LDPE resins range from 0.916 to Ethylene copolymers, such as 0.925 (g/CM3) ethylene-vinyl acetate (EVA) are made by the polymerization of ethylene units • MDPE resins range from 0.926 to with randomly distributed comonomer 0.940 (g/CM3) groups, such as vinyl acetate (VA). • HDPE resins range from 0.941 to The polymerization of monomers 0.965 (g/CM3) creates a mixture of molecular chains • PP resins range from 0.890 to of varying lengths. Some are short, 0.905 (g/CM3) others enormously long, containing several hundred thousand monomer EVA copolymers’ densities are units. For polyethylene, the ethylene Figure 5. Crystalline (A) and functions of the proportion of vinyl chains have numerous side branches. amorphous (B) regions in acetate incorporated into the resin; as For every 1,000 ethylene units in the VA increases, density increases. polyolefin. molecular chain, there are about one to The density of polyethylene resins ten short or long branches. The influences numerous properties (Table branches radiate three-dimensionally 1). With increasing density, some (Fig. 4). properties, such as stiffness, are Branching affects many polymer enhanced, while others, such as properties, including density, hardness, environmental stress crack resistance flexibility and transparency. Chain and low temperature toughness, are branches also become points in the reduced toughness. 2 Molecular Weight Table 1: General Guide to the Effects of Polyolefin Physical Atoms of different elements, such Properties on Resin Mechanical Properties and as carbon, hydrogen, etc., have Processing. different atomic weights. For carbon, the atomic weight is 12, and for hydrogen, it is 1. Thus, the molecular Melt Index Density weight of the ethylene unit is the sum of Increases Increases its six atoms (2 carbon + 4 hydrogen) or 28. The molecular weight of an individual polymer molecule is the sum total of teh atomic weights of all Chemical Resistance Stays the Same Increases combined ethylene units. Every polyolefin resin consists of a Clarity Increases Decreases mixture of large and small chains, i.e., chains of high and low molecular Elongation at Break Decreases Decreases weights. The molecular weight of the polymer chain generally is in the Flexibility Stays the Same Decreases thousands. The average of these is called, quite appropriately, the average Gloss Improves Stays the Same molecular weight. As average molecular weight increases, resin Heat Resistance Decreases Increases toughness increases. The same holds (softening point) true for telongational properties and environmental stress crack resistance Impermeability to Gases/Liquids Stays the Same Increases (cracking brought on when a molded part is subjected to stresses in the Low Temperature Flexibiity Decreases Decreases presence of solvents, oils, detergents, etc.). Melt Viscosity Decreases Stays the Same Melt Index Melt Index (for polyethylene)and Mechanical Flex Life Decreases Decreases Melt Flow Rates (for Polypropylene) are an indirect, simple measurement of Stress Crack Resistance Decreases Decreases the polymer’s average molecular weight. Polyethylene resin melt index Tensile Strength at Break Decreases Increases is expressed in terms of
Recommended publications
  • 3. Film Extrusion and Conversion
    FILM EXTRUSION AND CONVERSION 03 – TECHNICAL GUIDE Front Cover The Qenos Technical Centre operates a range of commercial and laboratory scale extrusion and moulding equipment for the injection moulding, blow moulding, fi lm extrusion (pictured), pipe extrusion and rotational moulding markets. Qenos manufactures a full range of fi lm grades for applications such as food contact, packaging and agriculture, including Alkamax metallocene mLLDPE resin for applications where superior performance is required at a thinner gauge. Qenos, the Qenos brandmark, Alkathene, Alkatuff, Alkamax, Alkadyne and Alkatane are trade marks of Qenos Pty Ltd. FILM EXTRUSION AND CONVERSION 3 3 FILM EXTRUSION AND CONVERSION TABLE OF CONTENTS PART A. FILM EXTRUSION 6 GRADE SELECTION FOR FILM EXTRUSION 6 Comparison of Product Types and Classes 6 Blending of LLDPE, mLLDPE and LDPE 7 Blending of HDPE with LLDPE and LDPE 8 Coextrusion 8 FILM EXTRUSION TECHNOLOGY 8 Process Description 8 Blown Film Parameters 9 RHEOLOGICAL CONSIDERATIONS 10 Flow in Shear 10 Extensional Flow 11 Melt Relaxation 11 Surface Melt Fracture 11 THE EXTRUSION PROCESS 12 Extruder Drive System 12 Heating and Cooling the Barrel 12 SCREW DESIGN 13 Conventional Screw Design 13 Modified and High Performance Screws 13 Barrier Flighted Screws 13 Extruder Head 14 Grooved Feed Section 14 FILM EXTRUSION DIES 14 Types of Film Die 15 Spiral Mandrel Dies 15 Coextrusion Film Dies 16 Die Design Principles for LDPE Polymers 16 Die Design Principles for LLDPE and mLLDPE Polymers 16 Wide Die Gap Extrusion 16 Narrow
    [Show full text]
  • Blow Molding Solutions Selection Guide
    FRESH SOLUTIO FOR BLOW NS MOLDE D CO NTA INE RS YOUR BEST SOURCE FOR BLOW MOLDING SOLUTIONS As the world’s leading polyethylene producer, The Dow Chemical Company (Dow) is uniquely positioned to be your supplier of choice for blow molding materials. By collaborating with customers and other key members throughout the value chain, Dow helps drive innovation and promote sustainability with solutions that successfully address the needs of virtually every blow molding market, including: • Water Juice Dairy (WJD) • Pharmaceuticals (Pharma) • Household & Industrial Chemicals (HIC) • Large Part Blow Molding (LPBM) • Agricultural Chemicals (Ag Chem) • Durable Goods • Personal Care Our rich portfolio of sustainable solutions is backed by industry-leading technical expertise, deep understanding of the marketplace, a highly responsive supply chain, and an unmatched set of global resources. In addition to offering excellent performance and processing, Dow solutions are integral to developing containers that help reduce costs, improve retail visibility, and enhance shelf life. 1 The following pages provide an overview of Dow plastic resins designed for use in blow molded rigid packaging applications: • UNIVAL™ High Density Polyethylene (HDPE) Resins are industry standard, “workhorse” materials for everything from food and beverages to household, industrial, and agricultural chemicals. • CONTINUUM™ Bimodal Polyethylene Resins offer opportunities for increased competitive advantage with enhanced performance that creates the potential for lightweighting, incorporation of post-consumer recycle (PCR) content, and more. • DOW HEALTH+™ Polyethylene Resins deliver the high levels of quality, compliance, and commitment needed to meet the stringent requirements of healthcare and pharmaceutical applications. • DOW™ HDPE Resins are available in bimodal and monomodal grades that offer Dow customers in Latin America excellent top load strength, ESCR, and more for a wide range of applications.
    [Show full text]
  • Fabrication of Nanostructures by Roll-To-Roll Extrusion Coating
    View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Dec 21, 2017 brought to you by CORE provided by Online Research Database In Technology Fabrication of Nanostructures by Roll-to-Roll Extrusion Coating Murthy, Swathi; Matschuk, Maria; Huang, Qian; Mandsberg, N.K.; Feidenhans'l, Nikolaj Agentoft; Johansen, P.; Christensen, L.; Pranov, H.; Kofod, G.; Pedersen, Henrik Chresten; Hassager, Ole; Taboryski, Rafael J. Published in: Advanced Engineering Materials Link to article, DOI: 10.1002/adem.201500347 Publication date: 2015 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Murthy, S., Matschuk, M., Huang, Q., Mandsberg, N. K., Feidenhans'l, N. A., Johansen, P., ... Taboryski, R. J. (2015). Fabrication of Nanostructures by Roll-to-Roll Extrusion Coating. Advanced Engineering Materials, 18(4), 484-489. DOI: 10.1002/adem.201500347 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Packaging with Topas® Coc Packaging with Topas® Coc
    PACKAGING WITH TOPAS® COC PACKAGING WITH TOPAS® COC TOPAS Advanced Polymers TOPAS Advanced Polymers is the world’s leading maker of COC (cyclic TOPAS Advanced Polymers also supplies the chemical raw material nor- olefin copolymer), a glass-clear plastic for healthcare, optics, packag- bornene. A joint venture of Polyplastics Co., Ltd. and Daicel Corporation, ing, and electronics applications. From insulin delivery, to food contact the company is headquartered in Frankfurt, Germany. It operates the films, to tablet and smartphone displays, TOPAS is the high performance world's largest COC plant in Oberhausen, Germany. TOPAS® is a regis- material of choice. The broad global regulatory compliance of TOPAS tered trademark of TOPAS Advanced Polymers for its family of cyclic can make your next development a simpler task. olefin copolymer resins. Important The properties of articles can be affected by a variety of factors, includ- specified, the numerical values given in this literature are for reference ing choice of material, additives, part design, processing conditions, purposes only and not for use in product design. Without exception, and exposure to the environment. Customers should take responsibility please follow the information and other procedures explained in this as to the suitability of a particular material or part design for a spe- literature. This literature does not guarantee specific properties for our cific application. In addition, before commercializing a product that company’s products. Please take the responsibility to verify intellectual incorporates TOPAS, customers should take the responsibility of car- property rights of third parties. rying out performance evaluations. The products mentioned herein are not designed or promoted for use in medical or dental implants.
    [Show full text]
  • Considerations for Plastic Food Packaging
    PET Packaging Materials Polyethylene terephthalate (PET) is a commonly used plastic in the packaging industry. Common PET products include: • Take-out containers • Baked goods containers • Bottled water • Ketchup • Jars (peanut butter and mayonnaise) • Juices and carbonated drinks • Frozen foods • Cosmetics • Household products Composition of PET Plastic PET is a thermoplastic polymer resin from the polyester family. It is a polymer that is formed by combining modified ethylene glycol and purified terephthalic acid or dimethyl terephthalate. Although its name contains polyethylene, PET does not contain polyethylene. PET Plastic Characteristics • High clarity • Good chemical resistance • Good gas and moisture barrier • High impact resistance • Medium rigidity (semi-rigid to rigid) • Medium scratch resistance • Food contact safety • Temperature tolerance of -50 degrees F to 110 degrees F Origins of PET Plastic Although PET plastic was patented in 1941, the first PET bottle was not produced until 1973. How are PET plastics made? There are two primary processes for producing a PET package. • Thermoforming – a process by which a sheet of PET plastic is heated and shaped using a mold into the desired shape. • Blow Molding – typically used to make containers with narrow mouths Thermoforming vs. Blow Molding PET Plastics Thermoforming allows for custom shaping of PET plastic into any desired shape. PET plastic is often used to produce clamshells, bakery containers or take-out containers. Blow molding is primarily used to create bottles. Why PET
    [Show full text]
  • Food Packaging Technology
    FOOD PACKAGING TECHNOLOGY Edited by RICHARD COLES Consultant in Food Packaging, London DEREK MCDOWELL Head of Supply and Packaging Division Loughry College, Northern Ireland and MARK J. KIRWAN Consultant in Packaging Technology London Blackwell Publishing © 2003 by Blackwell Publishing Ltd Trademark Notice: Product or corporate names may be trademarks or registered Editorial Offices: trademarks, and are used only for identification 9600 Garsington Road, Oxford OX4 2DQ and explanation, without intent to infringe. Tel: +44 (0) 1865 776868 108 Cowley Road, Oxford OX4 1JF, UK First published 2003 Tel: +44 (0) 1865 791100 Blackwell Munksgaard, 1 Rosenørns Allè, Library of Congress Cataloging in P.O. Box 227, DK-1502 Copenhagen V, Publication Data Denmark A catalog record for this title is available Tel: +45 77 33 33 33 from the Library of Congress Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton South, British Library Cataloguing in Victoria 3053, Australia Publication Data Tel: +61 (0)3 9347 0300 A catalogue record for this title is available Blackwell Publishing, 10 rue Casimir from the British Library Delavigne, 75006 Paris, France ISBN 1–84127–221–3 Tel: +33 1 53 10 33 10 Originated as Sheffield Academic Press Published in the USA and Canada (only) by Set in 10.5/12pt Times CRC Press LLC by Integra Software Services Pvt Ltd, 2000 Corporate Blvd., N.W. Pondicherry, India Boca Raton, FL 33431, USA Printed and bound in Great Britain, Orders from the USA and Canada (only) to using acid-free paper by CRC Press LLC MPG Books Ltd, Bodmin, Cornwall USA and Canada only: For further information on ISBN 0–8493–9788–X Blackwell Publishing, visit our website: The right of the Author to be identified as the www.blackwellpublishing.com Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.
    [Show full text]
  • Cosmetic Packaging to Save the Environment: Future Perspectives
    cosmetics Review Cosmetic Packaging to Save the Environment: Future Perspectives Patrizia Cinelli 1,*, Maria Beatrice Coltelli 1,* , Francesca Signori 1, Pierfrancesco Morganti 2 and Andrea Lazzeri 1 1 Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 2, 56126 Pisa, Italy; [email protected] (F.S.); [email protected] (A.L.) 2 Dermatol Unit, Campania University L.Vanvitelli, Via Pansini 5, 80131 Naples, Italy; [email protected] * Correspondence: [email protected] (P.C.); [email protected] (M.B.C.); Tel.: +39-050-221-7869 (P.C.) Received: 18 March 2019; Accepted: 11 April 2019; Published: 15 April 2019 Abstract: Consumer awareness about the damages that plastic packaging waste cause to the environment, coupled with bio-economy and circular economy policies, are pushing plastic packaging versus the use of bio-based and biodegradable materials. In this contest, even cosmetic packaging is looking for sustainable solutions, and research is focusing on modifying bio-based and biodegradable polymers to meet the challenging requirements for cosmetic preservation, while maintaining sustainability and biodegradability. Several bio-based and biodegradable polymers such as poly(lactic acid), polyhydroxyalkanoates, polysaccharides, etc., are available, and some first solutions for both rigid and flexible packaging are already present on the market, while many others are under study and optimization. A fruitful cooperation among researchers and industries will
    [Show full text]
  • S.B. No.3W Jan I8 2019 a Bill for an Act
    THE SENATE THIRTIETH LEGISLATURE, 2019 STATE OF HAWAII S.B. NO.3W JAN I8 2019 A BILL FOR AN ACT RELATING TO ENVIRONMENTAL PROTECTION. BE IT ENACTED BY THE LEGISLATURE OF THE STATE OF HAWAII: 1 SECTION 1. The Hawaii Revised Statutes is amended by 2 adding a new chapter to be appropriately designated and to read 3 as follows: 4 "CHAPTER 5 PLASTIC STRAWS, PLASTIC BAGS, POLYSTYRENE FOAM CONTAINERS, AND 6 EXPANDED POLYSTYRENE FOOD SERVICE PRODUCTS 7 S -1 Definitions. As used in this chapter: 8 "Carryout bag" means a bag provided by a store or food 9 service business to a customer at the point of sale for the 10 purpose of transporting groceries or retail goods. 11 "Department" means the department of health. 12 "Expanded polystyrene" means blown polystyrene and expanded 13 and extruded foams that are thermoplastic petrochemical 14 materials utilizing a styrene monomer and processed by a number 15 of techniques, including, but not limited to, fusion of polymer 16 spheres (expandable bead polystyrene), injection molding, foam 17 molding, and extrusion-blow molding (extruded foam polystyrene). SB LRB 19-0090.doc 1 Page 2 S.B. NO. 367 1 "Expanded polystyrene food service product" means a product 2 made, in whole or in part, of expanded polystyrene that is used 3 for selling or providing a food or beverage, and includes, but 4 is not limited to, a food container, plate, hot or cold beverage 5 cup, meat or vegetable tray, or egg carton. 6 "Expanded polystyrene food service product" does not 7 include a product used to package raw, uncooked, or butchered 8 meat, fish, poultry, or seafood for off-premises consumption.
    [Show full text]
  • Consolidating Plastic Suppliers?
    Consolidating Plastic Suppliers? Flambeau Gives You: Experience You Can Trust • Contract Manufacturing Since 1947 • Injection Molding/Blow Molding/Mold Making • Stainless Steel Overmolding • Catheter Overmolding • Insert Molding • Class 7 Cleanroom Molding, Assembly & Packaging • Turnkey Program Management Speed to Market • Prototyping & Value Engineering • Domestic and Offshore Tooling a division of Flambeau INC. • DFM and Product Development a Nordic Group Member Company Global Footprint 1-800-628-1672 • www.flambeaumedical.com • 10 Locations on 3 Continents • ISO13485:2016 Certified • FDA Registered • • Worldwide Logistics • Class 7 Cleanroom Molding, Assembly & Packaging • • Regional Customer Support • cGMP Compliant • LU03092020 Copyright © 2020 Flambeau Medical Markets Group, a division of Flambeau, Inc. All Rights Reserved a division of Flambeau INC. Headquartered in Baraboo, Wisconsin www.flambeaumedical.com 1-800-628-1672 • E-mail: [email protected] USA: Baraboo, WI • Columbus, IN • Madison, GA Middlefield, OH • Phoenix, AZ • Sharon Center, OH International: Ramsgate, Kent, UK • Saltillo, Coahuila, Mexico Company Description Flambeau Medical Markets Group is a diverse manufacturing company providing a complete product fulfillment service for medical device and equipment industries. Quality, traceability, speed to market, and economic value are all important factors to better enable you to compete in the rapidly evolving medical world. Our Phoenix, Arizona facility is an ISO 13485:2016 (CFR21 820 Compliant) Certified Contract
    [Show full text]
  • A Guide to Polyethylene Blow Moulding
    POLYETHYLENE BLOW MOULDING 08 – TECHNICAL GUIDE Front Cover The Qenos Technical Centre operates a range of commercial and laboratory scale extrusion and moulding equipment for the injection moulding, blow moulding (pictured), fi lm extrusion, pipe extrusion and rotational moulding markets. Qenos produces a full range of Alkatane HDPE grades for blow moulding applications ranging from thin walled high speed milk and juice bottles to high molecular weight 1000L cubes. Alkatane – Super Clean. Super Safe. Qenos, the Qenos brandmark, Alkathene, Alkatuff, Alkamax, Alkadyne and Alkatane are trade marks of Qenos Pty Ltd. A GUIDE TO POLYETHYLENE 8 BLOW MOULDING 8 A GUIDE TO POLYETHYLENE BLOW MOULDING CONTENTS EXTRUSION BLOW MOULDING AND EXTRUSION BLOW MOULDING MACHINES 6 Basic Processing Principles 6 Plastication Systems 6 Basic Design of Plastication Systems 6 Shear Rate 7 Throughput Efficiency 7 Basic Requirements for the Plastication System 7 Single-screw extruders 8 Slow Running Extruders of Conventional Design 8 Specific Power Requirement 8 Output 8 Reciprocating Screw and Reciprocating Barrel Extruders 9 Reciprocating Screw Machines 10 Reciprocating Barrel Machines 10 High Speed Extruders 10 Twin-screw Extruders 10 Ram Extruders 11 Extrusion Dies for Continuous Parison Production 11 Axial Flow Crosshead with Spider Support 11 Radial Flow Crosshead with Through Mandrel 12 Design with Circular Groove 13 Design with Heart-shaped Channel 13 Parison Dies 14 Dies with cylindrically parallel annular gap 15 Design with Conical Inflow Zone 15 Expansion
    [Show full text]
  • Ecovio® Extrusion Brochure
    ecovio® Biologically degradable solutions for extrusion applications Blown film applications Cast / flat film applications (e. g. thermoforming) Extrusion coating of paper and cardboard Table of contents Bild ecovio® – certified biodegradable and bio-based 4 - 7 Characteristics of ecovio® 8 -11 Product portfolio 9 General characteristics 10 Processing of ecovio® 12 - 17 General information regarding processing 12 Extrusion processes (general) 13 Blown film extrusion 14 Extrusion coating 15 Cast / flat film extrusion 16 General Information 18 - 27 Processing and post-treatment 19 Safety precautions 20 Quality assurance 21 Delivery, storage and aging 21 Services 22 Glossary 23 Literature references 23 3 ecovio® – certified biodegradable and bio-based ecovio® – A HIGH QUALITY, VERSATILE BIOPLASTIC FROM BASF THAT IS CERTIFIED BIO-BASED AND BIODEGRADABLE Not biodegradable Biodegradable Based on renewable Bio-PE, Bio-PA, Bio-PUR, PLA, PHA resources Bio-PP Fossil-based PE, PP, PVC PBS Source: Hans-Josef Endres, Technical Bio-polymers, 2009. What are bioplastics? Biodegradable plastics can be broken down by microorganisms. In the process, the microorgan- The term “bioplastics” comprises two different isms emit enzymes which break down the polymer groups of products: “bio-based” and “biodegrad- chains of the plastic into smaller molecular compo- able” plastics. nents. These are subsequently absorbed by bac- teria and fungi, metabolized and, in the process, Bio-based plastics are wholly or partially derived converted into carbon dioxide, water and biomass. from renewable raw materials. For example, this Biodegradable plastics can, but do not have to be, material group includes polylactic acid (PLA), poly- produced based on renewable resources. hydroxyalkanoate (PHA) as well as the partially bio- based plastic ecoflex® FS from BASF.
    [Show full text]
  • Vacuum Packaging
    Packaging as it Relates to Core Storage and Preservation What follows is an attempt to synthesize current information from a wide variety of sources into a useful guide to methods of core storage and preservation. It must be stressed that the focus of the packaging industry is twofold. The first is the relatively short term preservation of, mostly, food and medical products. The second is packaging for protection and display purposes. Clearly, neither of these industries address the specific needs and requirements of IODP, so we must be creative and eclectic in our selection of the most suitable products for our application. Moreover, we must be actively involved in the research, testing and development of new products and methods by partnership/involvement with other institutions, so that IODP can be at the forefront of this technology as befits our ethos. Section 1 - Vacuum Packaging Vacuum packing (or vacuum sealing) is a form of packaging that involves the removal of air (and sometimes its replacement) from a pouch or plastic container. Vacuum packaging provides several benefits: protection against dehydration; barrier against air or moisture; tamper evident protection; compressed packaging for fragmented cores; protection from dust and moisture. Types of Vacuum Sealing Equipment Non Chamber Vacuum Sealers These units vacuum and seal the pouches externally. Some units also come equipped with special external nozzles to allow for the vacuum packaging using plastic containers. Non Chamber Vacuum sealers are meant for low volumes, and are suitable for vacuum sealing products that have little or no moisture. However some units do have special collectors for products that have excess moisture.
    [Show full text]