Annotated Bibliogrpahy on Software Maintenance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PL/SQL Multi-Diagrammatic Source Code Visualization
SQLFlow: PL/SQL Multi-Diagrammatic Source Code Visualization Samir Tartir Ayman Issa Department of Computer Science University of the West of England (UWE), University of Georgia Coldharbour Lane, Frenchay, Bristol BS16 1QY Athens, Georgia 30602 United Kingdom USA Email: [email protected] Email: [email protected] ABSTRACT: A major problem in software introducing new problems to other code that was perfectly maintenance is the lack of a well-documented source code working before. Therefore, educating programmers about in software applications. This has led to serious the behaviors of the target code before start modifying it difficulties in software maintenance and evolution. In is not an easy task. Source code visualization is one of the particular, for those developers who are faced with the heavily used techniques in the literature to overcome this task of fixing or modifying a piece of code they never lack of documentation problem, and its consequent even knew existed before. Database triggers and knowledge-sharing problem [7, 9]. procedures are parts of almost every application, are typical examples of badly documented software Therefore, this research aims at investigating the current components being the hidden back end of software database source code visualization tools and identifying applications. Source code visualization is one of the the main open issues for research. Consequently, the heavily used techniques in the literature so as to mostly used PL/SQL database programming language has familiarize software developers with new source code, been selected for a flowcharting reverse engineering and compensate for the knowledge-sharing problem. prototype tool called "SQLFlow". SQLFlow has been Therefore, a new PL/SQL flowcharting reverse designed, implemented, and tested to parse the target engineering tool, SQLFlow, has been designed and PL/SQL code stored in database procedures, analyze its developed. -
ASSESSING the MAINTAINABILITY of C++ SOURCE CODE by MARIUS SUNDBAKKEN a Thesis Submitted in Partial Fulfillment of the Requireme
ASSESSING THE MAINTAINABILITY OF C++ SOURCE CODE By MARIUS SUNDBAKKEN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science WASHINGTON STATE UNIVERSITY School of Electrical Engineering and Computer Science DECEMBER 2001 To the Faculty of Washington State University: The members of the Committee appointed to examine the thesis of MARIUS SUNDBAKKEN find it satisfactory and recommend that it be accepted. Chair ii ASSESSING THE MAINTAINABILITY OF C++ SOURCE CODE Abstract by Marius Sundbakken, M.S. Washington State University December 2001 Chair: David Bakken Maintenance refers to the modifications made to software systems after their first release. It is not possible to develop a significant software system that does not need maintenance because change, and hence maintenance, is an inherent characteristic of software systems. It has been estimated that it costs 80% more to maintain software than to develop it. Clearly, maintenance is the major expense in the lifetime of a software product. Predicting the maintenance effort is therefore vital for cost-effective design and development. Automated techniques that can quantify the maintainability of object- oriented designs would be very useful. Models based on metrics for object-oriented source code are necessary to assess software quality and predict engineering effort. This thesis will look at C++, one of the most widely used object-oriented programming languages in academia and industry today. Metrics based models that assess the maintainability of the source code using object-oriented software metrics are developed. iii Table of Contents 1. Introduction .................................................................................................................1 1.1. Maintenance and Maintainability....................................................................... -
Software Maintenance Maintenance Is Inevitable Types of Maintenance
SoftWindows 8/18/2003 Software Maintenance • Managing the processes of system change Reverse Engineering (Software Maintenance & Reengineering) © SERG Maintenance is Inevitable • The system requirements are likely to change while the system is being developed because the environment is changing. • When a system is installed in an environment it changes that environment and therefore changes the system requirements. Reverse Engineering (Software Maintenance & Reengineering) © SERG Types of Maintenance • Perfective maintenance – Changing a system to make it meet its requirements more effectively. • Adaptive maintenance – Changing a system to meet new requirements. • Corrective maintenance – Changing a system to correct deficiencies in the way meets its requirements. Reverse Engineering (Software Maintenance & Reengineering) © SERG Distributed Objects 1 SoftWindows 8/18/2003 Distribution of Maintenance Effort Corrective maintenance (17%) Adaptive maintenance Perfective (18%) maintenance (65%) Reverse Engineering (Software Maintenance & Reengineering) © SERG Evolving Systems • It is usually more expensive to add functionality after a system has been developed rather than design this into the system: – Maintenance staff are often inexperienced and unfamiliar with the application domain. – Programs may be poorly structured and hard to understand. – Changes may introduce new faults as the complexity of the system makes impact assessment difficult. – The structure may be degraded due to continual change. – There may be no documentation available to describe the program. Reverse Engineering (Software Maintenance & Reengineering) © SERG The Maintenance Process • Maintenance is triggered by change requests from customers or marketing requirements. • Changes are normally batched and implemented in a new release of the system. • Programs sometimes need to be repaired without a complete process iteration but this is dangerous as it leads to documentation and programs getting out of step. -
System Software Maintenance and Support 24X7
SYSTEM SOFTWARE MAINTENANCE AND SUPPORT SERVICES - PREMIUM These Premium System Software Maintenance and Support Service terms and conditions (“Terms and Conditions”) apply to any quote, order, order acknowledgment, and invoice, and any sale or provision of Premium System Software Maintenance and Support Services as defined herein provided to Customer by Viavi Solutions Inc. (“Viavi”), in addition to Viavi’s General Terms (“General Terms”) and/or Software License Terms, which are incorporated by reference herein and are either attached hereto, available at www.viavisolutions.com/terms or available upon request. k) Severity Level means classification of a problem determined by Viavi personnel 1. PURPOSE AND SCOPE based upon the Customer’s assessment of business impact. The three (3) Severity Levels that apply to the Services are as follows: These Terms and Conditions describe the Services that Viavi will provide to, and perform for, Customer. These Terms and Conditions apply to Services for standard Software, as 1) Problem Report – Critical means conditions that severely affect the defined herein, and are limited to the System configuration specified in a Statement of primary functionality of the System and because of the business impact to the Work (“SOW”) or other ordering document (i.e., a quote, order, order acknowledgment customer requires non-stop immediate corrective action, regardless of time of day or invoice) which contains a description of the System. All Services and Documentation or day of the week as viewed by a customer -
A Prolog-Based Proof Tool for Type Theory Taλ and Implicational Intuitionistic-Logic
A Prolog-based Proof Tool for Type Theory TAλ and Implicational Intuitionistic-Logic L. Yohanes Stefanus University of Indonesia Depok 16424, Indonesia [email protected] and Ario Santoso∗ Technische Universit¨atDresden Dresden 01187, Germany [email protected] Abstract Studies on type theory have brought numerous important contributions to computer science. In this paper we present a GUI-based proof tool that provides assistance in constructing deductions in type theory and validating implicational intuitionistic-logic for- mulas. As such, this proof tool is a testbed for learning type theory and implicational intuitionistic-logic. This proof tool focuses on an important variant of type theory named TAλ, especially on its two core algorithms: the principal-type algorithm and the type inhabitant search algorithm. The former algorithm finds a most general type assignable to a given λ-term, while the latter finds inhabitants (closed λ-terms in β-normal form) to which a given type can be assigned. By the Curry{Howard correspondence, the latter algorithm provides provability for implicational formulas in intuitionistic logic. We elab- orate on how to implement those two algorithms declaratively in Prolog and the overall GUI-based program architecture. In our implementation, we make some modification to improve the performance of the principal-type algorithm. We have also built a web-based version of the proof tool called λ-Guru. 1 Introduction In 1902, Russell revealed the inconsistency in naive set theory. This inconsistency challenged the foundation of mathematics at that time. To solve that problem, type theory was introduced [1, 5]. As time goes on, type theory becomes widely used, it becomes a logician's standard tool, especially in proof theory. -
LIGO Data Analysis Software Specification Issues
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T970100-A - E LIGO Data Analysis Software Specification Issues James Kent Blackburn Distribution of this draft: LIGO Project This is an internal working document of the LIGO Project. California Institute of Technology Massachusetts Institute of Technology LIGO Project - MS 51-33 LIGO Project - MS 20B-145 Pasadena CA 91125 Cambridge, MA 01239 Phone (818) 395-2129 Phone (617) 253-4824 Fax (818) 304-9834 Fax (617) 253-7014 E-mail: [email protected] E-mail: [email protected] WWW: http://www.ligo.caltech.edu/ Table of Contents Index file /home/kent/Documents/framemaker/DASS.fm - printed July 22, 1997 LIGO-T970100-A-E 1.0 Introduction The subject material discussed in this document is intended to support the design and eventual implementation of the LIGO data analysis system. The document focuses on raising awareness of the issues that go into the design of a software specification. As LIGO construction approaches completion and the interferometers become operational, the data analysis system must also approach completion and become operational. Through the integration of the detector and the data analysis system, LIGO evolves from being an operational instrument to being an operational grav- itational wave detector. All aspects of software design which are critical to the specifications for the LIGO data analysis are introduced with the preface that they will be utilized in requirements for the LIGO data analysis system which drive the milestones necessary to achieve this goal. Much of the LIGO data analysis system will intersect with the LIGO diagnostics system, espe- cially in the areas of software specifications. -
Software Engineering Software Maintenance
SOFTWARE ENGINEERING SOFTWARE MAINTENANCE Software maintenance is the process of modification or making changes in the system after delivery to overcome errors and faults in the system that were not uncovered during the early stages of the development cycle. LEARNING OBJECTIVES • To study on why maintenance is an issue. • To study on reverse engineering and limitations. • To organize data. • To check what the system does. SOFTWARE MAINTENANCE The IEEE Standard for Software Maintenance (IEEE 1219) gave the definition for software maintenance as “The process of modifying a software system or component after delivery to correct faults, improves performance or other attributes, or adapt to a changed environment.” Maintenance Principles 100 Hardware Development 60 Software 20 Maintenance Percent of total cost total of Percent 1995 2000 2010 The IEEE/EIA 12207 Standard defines maintenance as modification to code and associated documentation due to a problem or the need for improvement. Nature of Maintenance Modification requests are logged and tracked, the impact of proposed changes are determined, code and other software artifacts are modified, testing is conducted, and a new version of the software product is released. Maintainers can learn from the developer´s knowledge of the software. Need for Maintenance Maintenance must be performed in order to: • Correct faults. • Improve the design. • Implement enhancements. • Interface with other systems. • Adapt programs so that different hardware, software, system features, and telecommunications facilities can be used. • Migrate legacy software. • Retire software Tasks of a maintainer The maintainer does the following functions: • Maintain control over the software´s day-to-day functions. • Maintain control over software modification. -
Read Ms. Shaw's First Amended Complaint
Janet L. Goldstein Peter W. Chatfield THE MARTYN FIRM, PLLC PHILLIPS & COHEN LLP 1054 31st Street, NW 2000 Massachusetts Ave., NW Washington, D.C. 20007 Washington, D.C. 20036 Tel: (202) 965-3060 Tel: (202) 833-4567 Fax: (202) 965-3063 Fax: (202) 833-1815 Jonathan A. Willens (JW-9180) JONATHAN A. WILLENS LLC 217 Broadway, Suite 707 New York, New York 10007 Tel: (212) 619-3749 Fax: (800) 879-7938 Attorneys for qui tam plaintiff Ann-Marie Shaw UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF NEW YORK UNITED STATES OF AMERICA ) 06 CV 3552 (DLI) (SMG) ex rel. ANN-MARIE SHAW ) and ) AMENDED COMPLAINT ) FOR VIOLATIONS OF STATE OF CALIFORNIA ex rel.ANN-MARIE SHAW ) FEDERAL AND STATE DISTRICT OF COLUMBIA ex rel.ANN-MARIE SHAW ) FALSE CLAIMS ACTS STATE OF FLORIDA ex rel.ANN-MARIE SHAW ) STATE OF HAWAII ex rel.ANN-MARIE SHAW ) STATE OF ILLINOIS ex rel.ANN-MARIE SHAW ) COMMONWEALTH OF MASSACHUSETTS ) ex rel.ANN-MARIE SHAW ) STATE OF NEVADA ex rel.ANN-MARIE SHAW ) COMMONWEALTH OF VIRGINA ) ex rel.ANN-MARIE SHAW ) STATE & CITY OF NEW YORK ) ex rel.ANN-MARIE SHAW, ) ) JURY TRIAL DEMANDED Plaintiffs, ) ) FILED UNDER SEAL v. ) ) CA, INC., ) ) Defendant. ) _______________________________________________ ) Through her attorneys, plaintiff and qui tam relator Ann-Marie Shaw, for her Amended Complaint against Defendant CA, Inc. (“CA”), formerly known as Computer Associates International, Inc. or “Computer Associates,” alleges as follows: FACTS COMMON TO ALL COUNTS A. Introduction 1. This is a civil action to recover damages and civil penalties arising from false and/or fraudulent statements, records, and claims made and caused to be made by the Defendant CA and/or its agents and employees in violation of the Federal Civil False Claims Act, 31 U.S.C. -
IDE-JASMIN an Interactive Graphical Approach for Parallel Programming in Scientific Computing
IDE-JASMIN An Interactive Graphical Approach for Parallel Programming in Scientific Computing Liao Li, Zhang Aiqing, Yang Zhang, Wang Wei and Jing Cuiping Institute of Applied Physics and Computational Mathematics, No. 2, East Fenghao Road, Beijing, China Keywords: Parallel Programming, Integrator Component, Integrated Development Environment, Structured Flow Chart. Abstract: A major challenge in scientific computing lays in the rapid design and implementation of parallel applications for complex simulations. In this paper, we develop an interactive graphical system to address this challenge. Our system is based on JASMIN infrastructure and outstands three key features. First, to facilitate the organization of parallel data communication and computation, we encapsulate JASMIN integrator component models as user-configurable components. Second, to support the top-down design of the application, we develop a structured-flow-chart based visual programming approach. Third, to finally generate application code, we develop a powerful code generation engine, which can generate major part of the application code using information in flow charts and component configurations. We also utilize the FORTRAN 90 standard to assist users write numerical kernels. These approaches are integrated and implemented in IDE-JASMIN to ease parallel programming for domain experts. Real applications demonstrate that our approaches for developing complex numerical applications are both practical and efficient. 1 INTRODUCTION data access and manipulation, respectively. Using JASMIN, users need implement several subclasses “J Adaptive Structured Meshes applications of strategy classes in C++ language though they Infrastructure” (JASMIN) is an infrastructure for mainly focus on writing numerical subroutine in structured mesh and SAMR applications for FORTRAN. numerical simulations of complex systems on The limited popularization of JASMIN is parallel computers (Mo et al., 2010). -
Techniques for Software Maintenance 57 02 58
01 Techniques for Software Maintenance 57 02 58 03 59 04 60 Kostas Kontogiannis 05 61 Department of Electrical and Computer Engineering, National Technical University of Athens, 06 62 Athens, Greece 07 63 08 64 09 65 10 66 Abstract 11 Software maintenance constitutes a major phase of the software life cycle. Studies indicate that software 67 12 maintenance is responsible for a significant percentage of a system’s overall cost and effort. The software 68 13 engineering community has identified four major types of software maintenance, namely, corrective, 69 14 perfective, adaptive, and preventive maintenance. Software maintenance can be seen from two major points 70 15 of view. First, the classic view where software maintenance provides the necessary theories, techniques, 71 16 methodologies, and tools for keeping software systems operational once they have been deployed to their 72 17 operational environment. Most legacy systems subscribe to this view of software maintenance. The second 73 18 view is a more modern emerging view, where maintenance is an integral part of the software development 74 19 process and it should be applied from the early stages in the software life cycle. Regardless of the view by 75 which we consider software maintenance, the fact is that it is the driving force behind software evolution, a 20 76 very important aspect of a software system. This entry provides an in-depth discussion of software 21 77 Q1 maintenance techniques, methodologies, tools, and emerging trends. 22 78 23 79 24 80 25 INTRODUCTION type of software maintenance is referred to as Adaptive 81 26 82 Software Maintenance and refers to activities that aim to 27 83 Software maintenance is an integral part of the software modify models and artifacts of existing systems so that 28 84 life cycle and has been identified as an activity that affects these systems can be integrated with new systems or 29 85 in a major way the overall system cost and effort. -
A Management Guide to Software Maintenance in COTS-Based Systems
A Management Guide to Software Maintenance in COTS-Based Systems May 1998 Judith A. Clapp Audrey E. Taub MITRE Center for Air Force C2 Systems Bedford, Massachusetts Abstract The objective of this guidebook is to provide planning information that results in cost- effective strategies for maintaining Commercial Off-the-Shelf (COTS) software products in COTS-based systems. It considers the issues and risks in using COTS software over the life cycle and how to control them. It describes changes in the software maintenance process that are needed to manage a COTS-based system. It provides guidance in developing a COTS Software Life-Cycle Management Plan. KEYWORDS: COTS software, software maintenance, COTS-based system, life-cycle planning, sustainment iii Table of Contents Section Page 1 Introduction 1 1.1 Objective 1 1.2 Rationale 1 1.3 Approach 1 2 Introduction to COTS Products 5 2.1 What are COTS Products? 5 2.2 What are COTS-based Systems? 4 2.3 How is the COTS Maintenance Process Different? 4 2.3.1 Risks 5 2.3.2 Maintenance Activities 8 3 Guidance for a COTS Software Life-Cycle Management 13 3.1 Major Decisions 11 3.2 Preparing a COTS Software Life-Cycle Management Plan 11 3.3 Program Requirements and Constraints 13 3.4 Preparing for COTS Software Maintenance 13 3.4.1 Establishing COTS Product Evaluation Criteria 13 3.4.2 Selecting COTS Products 14 3.4.3 Deciding on Purchasing and Licensing Arrangements 15 3.4.4 Organizing and Assigning Responsibilities for Software Maintenance 17 v Section Page 3.5 COTS-Based Maintenance Procedures 18 -
Empirical Studies Concerning the Maintenance of UML Diagrams and Their Use in the Maintenance of Code: a Systematic Mapping Study ⇑ Ana M
Information and Software Technology 55 (2013) 1119–1142 Contents lists available at SciVerse ScienceDirect Information and Software Technology journal homepage: www.elsevier.com/locate/infsof Empirical studies concerning the maintenance of UML diagrams and their use in the maintenance of code: A systematic mapping study ⇑ Ana M. Fernández-Sáez a,c, , Marcela Genero b, Michel R.V. Chaudron c,d a Alarcos Quality Center, University of Castilla-La Mancha, Spain b ALARCOS Research Group, Department of Technologies and Information Systems, University of Castilla-La Mancha, Spain c Leiden Institute of Advanced Computer Science, LeidenUniversity, The Netherlands d Joint Computer Science and Engineering Department of Chalmers University of Technology and University of Gothenburg, SE-412 96 Gõteborg, Sweden article info abstract Article history: Context: The Unified Modelling Language (UML) has, after ten years, become established as the de facto Received 1 December 2011 standard for the modelling of object-oriented software systems. It is therefore relevant to investigate Received in revised form 12 December 2012 whether its use is important as regards the costs involved in its implantation in industry being worth- Accepted 14 December 2012 while. Available online 4 February 2013 Method: We have carried out a systematic mapping study to collect the empirical studies published in order to discover ‘‘What is the current existing empirical evidence with regard to the use of UML dia- Keywords: grams in source code maintenance and the maintenance of the UML diagrams themselves? UML Results: We found 38 papers, which contained 63 experiments and 3 case studies. Empirical studies Software maintenance Conclusion: Although there is common belief that the use of UML is beneficial for source code mainte- Systematic mapping study nance, since the quality of the modifications is greater when UML diagrams are available, only 3 papers Systematic literature review concerning this issue have been published.