The Biology of Garveia Franciscana and Potential Options to Limit Impacts of Cooling System Fouling

Total Page:16

File Type:pdf, Size:1020Kb

The Biology of Garveia Franciscana and Potential Options to Limit Impacts of Cooling System Fouling Ref. No. [UMCES]CBL 2014-017 The Biology of Garveia franciscana and Potential Options to Limit Impacts of Cooling System Fouling August 2014 Prepared for: Calvert Cliff Nuclear Power Plant Questions and comments should be directed to: Dr. Mario Tamburri Maritime Environmental Resource Center Chesapeake Biological Laboratory University of Maryland Center for Environmental Science PO Box 38 / 146 Williams Street Solomons, Maryland 20688, USA Email: [email protected] Table of Contents Page No. 1. Background and Objectives ...........................................................................................1 2. Garveia franciscana Biology .........................................................................................1 2.1. Background ...........................................................................................................1 2.2. Life History ...........................................................................................................2 2.3. Tolerances .............................................................................................................3 3. Limiting Impacts on Cooling Pipe Fouling ...................................................................5 3.1. Problem Statement ................................................................................................5 4. Water Treatment ............................................................................................................5 4.1. Biocides ..................................................................................................................6 4.2. Physical Disinfection ............................................................................................9 5. Coatings .......................................................................................................................10 5.1. Biocide Coatings ..................................................................................................10 5.2. Biocide Free/Non-Toxic Coatings .......................................................................13 5.3. Summary .............................................................................................................17 6. Mechanical Approaches ...............................................................................................17 6.1. Online ..................................................................................................................17 6.2. Offline ..................................................................................................................19 6.3. Debris Filters .......................................................................................................21 6.4. Summary ..............................................................................................................22 7. Combination Approaches .............................................................................................22 8. Case Studies ................................................................................................................23 8.1. Surry Nuclear Power Plant and G. franciscana ..................................................23 8.2. Biofouling and its Control in Power Plant Cooling Water Systems ....................25 9. References ...................................................................................................................28 ii MERC ER02-14 1. Background and Objectives On October 11, 2013, staff from Constellation Energy Group and the University of Maryland Center for Environmental Science (UMCES) Chesapeake Biological Laboratory (CBL) met to discuss an ongoing problem that Calvert Cliffs Nuclear Power Plant (CCNPP) is experiencing resulting from colonization and growth on intake pipes by the rope grass hydroid (Garveia franciscana) (Torrey 1902). Large colonies of this hydroid form on intake pipes of the CCNPP cooling water system, potentially reducing flow of cooling waters and periodically but unpredictably breaking loose, clogging filter screens and impacting pump performance. This hydroid from the family Bougainvillidae is a common fouling organism and a widely distributed non-native or invasive species in the Chesapeake Bay. Based on discussions between Constellation and CBL staff, it was agreed that the first step in addressing this issue would be a review of existing information and options. This report completes Task 1.1 – A review of the biology, life history and physiological tolerances of G. franciscana, and Task 1.2 – A review of three potential categories of approaches for controlling or minimizing impacts G. franciscana cooling pipe fouling: (a) water treatment, (b) pipe coatings, and (c) mechanical control. Based on this information, recommendations on additional experiments, testing and trial applications will be made. 2. Garveia franciscana Biology 2.1. Background Garveia franciscana (commonly known as the rope grass hydroid) is a colonial marine hydroid (Cnidaria, Hydrozoa, Anthomedusae, Bougainvilliidae), and a very common sessile organism in temperate and subtropical estuaries (Thompson 1993). Hydroids are a class of marine invertebrate, closely related to sea anemones and corals, which are often mistaken as seaweeds when attached and growing to hard substrates such as rocks and pilings (Figure 1). Some have branching stems and others just have simple stalks. a. b. Figure 1. Photos of Garveia franciscana : a. (Fofonoff et al. 2003) and b. (Zammit et al. 2013). The native range of G. franciscana is unknown; however, it is suggested that the species has native populations in both India/Indian Ocean and East Brisbane/Queensland/Brisbane River, Australasia (Fofonoff et al. 2003). This hydroid exhibits broad tolerances to environmental 1 MERC ER02-14 conditions (Table 1) and has proliferated as an invasive species in many areas. It is known to be present in Europe, the Black and Azov Seas, West Africa, India, Australia, California (San Francisco Bay in 1901), the Atlantic coast of North America, the Gulf of Mexico, Panama, and South America. G. franciscana is most successful under estuarine conditions, and is capable of surviving in both tropical and temperate climates (Vervoort 1964; Figure 2). Table 1. Environmental Tolerances of Garveia franciscana. See Davidson et al. (2007) and Fofonoff et al. (2003) for more details and additional experimental references. See Thompson (1993) for estuarine field and laboratory studies (James River, VA). Parameter Maximum Minimum Optimal Water Temperature (°C) 30 - 35 0 - 12 10 to 32 Salinity (ppt) 23 – 35* 0 – 1* 5 to 25 Reproductive Temperature (°C) 34* 9* 15 to 32* Reproductive Salinity (ppt) 25 5 10 to 15 * Experimental Figure 2. Range of Garveia franciscana taken from NEMESIS Bioregion Distribution (Fofonoff et al. 2003). 2.2. Life History Hydroids use stinging cells to stun their prey (zooplankton and epibenthic animals), and tentacles transport the food in the mouth and down to the interconnected branches where it is digested and distributed to the colony (Lippson and Lippson 2006). Most hydroids reproduce through gonophores (reproductive polyps) that produce microscopic free-floating hydromedusae. The hydromedusae produce planula larvae (flattened, ciliated, bilaterally symmetrical larvae) that eventually settle onto hard substrate to form the hydroid colony. G. franciscana lacks a hydromedusae stage and reproduces sexually using gonophores. Male and female gonophores are born on separate colonies (Vervoort 1964). Eggs are fecundated in situ (one egg in each female gonophore) and develop into a complete planula inside the gonophore. The fully developed planula leaves the gonophore after rupture of the peridermal 2 MERC ER02-14 covering. Planula larvae then settle onto hard substrate and eventually produce a mature hydroid colony. Planula settle and attach to a variety of solid substrates (stones, wood, rope, concrete). After attachment, growth is vertical to help facilitate feeding, and then becomes horizontal as the colonies spread (Vervoort 1964, Stone and Webster Engineering Corp. 1992). Colonies become reproductive 19-27 days after planula settlement (Turpayeva et al. 1976, Stone and Webster Engineering Corp. 1992). Evidence suggests that G. franciscana’s growth rates are dependent on food supply and environmental conditions such as water temperature and salinity (Vervoort 1964, Calder 1990). In temperate latitudes, reproduction has been observed from June to September as long as temperatures remained above 14 °C (Schuchert 2007). Individual colonies grow from about 1-10 cm and often twist themselves into ropes over 30 cm high (Schuchert 2007, Lippson and Lippson 2006). In the Chesapeake Bay, near CCNPP, epifaunal growth plate studies (Cory 1967, Abbe 1987) describe a “yearly climax” community with growth beginning in spring, maximum biomass in summer, a late-summer die-off and little to no growth during the winter months. Hydroids were shown settling from April to June with G. franciscana actively colonizing in July and extremely abundant in September (Abbe 1987). There were a few colony clumps still observed over the winter months. During the summer growth period, colonies measured 50-65 mm in length on monthly panels and up to 80 mm on 3-month panels (Cory 1967). 2.3. Tolerances 2.3.1. Environmental Conditions Both laboratory and field experiments and observations have shown G. franciscana to tolerate exposure to freshwater and survive in salinities up to 35 ppt (Crowell and Darnell 1995, Thompson
Recommended publications
  • Hydrozoa of the Eurasian Arctic Seas 397 S
    THE ARCTIC SEAS CI imatology, Oceanography, Geology, and Biology Edited by Yvonne Herman IOm51 VAN NOSTRAND REINHOLD COMPANY ~ -----New York This work relates to Department of the Navy Grant NOOOI4-85- G-0252 issued by the Office of Naval Research. The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein. Copyright © 1989 by Van Nostrand Reinhold Softcover reprint of the hardcover 1st edition 1989 Library of Congress Catalog Card Number 88-33800 ISBN-13 :978-1-4612-8022-4 e-ISBN-13: 978-1-4613-0677-1 DOI: 10.1007/978-1-4613-0677-1 All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems-without written permission of the publisher. Designed by Beehive Production Services Van Nostrand Reinhold 115 Fifth Avenue New York, New York 10003 Van Nostrand Reinhold (International) Limited 11 New Fetter Lane London EC4P 4EE, England Van Nostrand Reinhold 480 La Trobe Street Melbourne, Victoria 3000, Australia Nelson Canada 1120 Birchmount Road Scarborough, Ontario MIK 5G4, Canada 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging in Publication Data The Arctic Seas. Includes index. 1. Oceanography-Arctic Ocean. 2. Geology-ArctiC Ocean. 1. Herman, Yvonne. GC401.A76 1989 551.46'8 88-33800 ISBN-13: 978-1-4612-8022-4 For Anyu Contents Preface / vii Contributors / ix 1.
    [Show full text]
  • Nemopsis Bachei (Agassiz, 1849) and Maeotias Marginata (Modeer, 1791), in the Gironde Estuary (France)
    Aquatic Invasions (2016) Volume 11, Issue 4: 397–409 DOI: http://dx.doi.org/10.3391/ai.2016.11.4.05 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Research Article Spatial and temporal patterns of occurrence of three alien hydromedusae, Blackfordia virginica (Mayer, 1910), Nemopsis bachei (Agassiz, 1849) and Maeotias marginata (Modeer, 1791), in the Gironde Estuary (France) 1,2, 1,2 3 4 4 1,2 Antoine Nowaczyk *, Valérie David , Mario Lepage , Anne Goarant , Éric De Oliveira and Benoit Sautour 1Univ. Bordeaux, EPOC, UMR 5805, F-33400 Talence, France 2CNRS, EPOC, UMR 5805, F-33400 Talence, France 3IRSTEA, UR EPBX, F-33612 Cestas, France 4EDF-R&D, LNHE, 78400 Chatou, France *Corresponding author E-mail: [email protected] Received: 23 July 2015 / Accepted: 21 July 2016 / Published online: 29 August 2016 Handling editor: Philippe Goulletquer Abstract The species composition and seasonal abundance patterns of gelatinous zooplankton are poorly known for many European coastal-zone waters. The seasonal abundance and distribution of the dominant species of hydromedusae along a salinity gradient within the Gironde Estuary, Atlantic coast of France, were evaluated based on monthly surveys, June 2013 to April 2014. The results confirmed the presence of three species considered to be introduced in many coastal ecosystems around the world: Nemopsis bachei (Agassiz, 1849), Blackfordia virginica (Mayer, 1910), and Maeotias marginata (Modeer, 1791). These species were found at salinities ranging from 0 to 22.9 and temperatures ranging from 14.5 to 26.6 ºC, demonstrating their tolerance to a wide range of estuarine environmental conditions.
    [Show full text]
  • The First Record of Bougainvillia Principis (Steenstrup, 1850) (Hydrozoa: Anthoathecata) from the White Sea
    Invertebrate Zoology, 2018, 15(4): 333–339 © INVERTEBRATE ZOOLOGY, 2018 The first record of Bougainvillia principis (Steenstrup, 1850) (Hydrozoa: Anthoathecata) from the White Sea A.A. Prudkovsky1, T.V. Neretina2,3 1 Dept. Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1–12, 119991 Moscow, Russia. E-mail: [email protected] 2 Pertsov White Sea Biological Station, Biological Faculty, Moscow State University M.V. Lomonos- ov, Leninskie Gory 1-12, 119991 Moscow, Russia. 3 Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia. ABSTRACT: Hydroids are common components of fouling communities in the sea, but they are often inconspicuous and easily overlooked. In such cases, the appearance of their medusae in plankton is an obvious indicator of the species’ presence in a locality. In this study, we present the first record of medusae Bougainvillia principis from the White Sea. We hypothesize that hydroids of the species B. principis inhabit the White Sea, as well, but they do not usually produce medusae and consequently the species does not exhibit sexual reproduction in the White Sea. How to cite this article: Prudkovsky A.A., Neretina T.V. 2018. The first record of Bougainvillia principis (Steenstrup, 1850) (Hydrozoa: Anthoathecata) from the White Sea // Invert. Zool. Vol.15. No.4. P. 333–339. doi: 10.15298/invertzool.15.4.02 KEY WORDS: Bougainvillia principis, medusa, first report, White Sea. Первая находка медузы Bougainvillia principis (Steenstrup, 1850) (Hydrozoa: Anthoathecata) в Белом море А.A. Прудковский1, Т.В. Неретина2,3 1 Кафедра зоологии беспозвоночных, Биологический факультет МГУ имени М.В.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • A New Species of Pachycordyle (Hydrozoa, Clavidae) from Lake Biwa (Japan), with Remarks on This and Related Clavid Genera*
    SCI. MAR., 64 (Supl. 1): 225-236 SCIENTIA MARINA 2000 TRENDS IN HYDROZOAN BIOLOGY - IV. C.E. MILLS, F. BOERO, A. MIGOTTO and J.M. GILI (eds.) A new species of Pachycordyle (Hydrozoa, Clavidae) from Lake Biwa (Japan), with remarks on this and related Clavid genera* SOFIA D. STEPANJANTS1, OLEG A. TIMOSHKIN2, 3, BORIS A. ANOKHIN1 and TATIANA O. NAPARA4 1Zoological Institute of the Russian Academy of Sciences, 199034 St.Petersburg, Russia. 2Center for Ecological Research, Kyoto Universitat. 509-3 Otsuka Kamai-Tanakami Otsu 520-2113, Japan. 3Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, Ul. Ulan-Batorskaya, 3, P.O.Box 4199, 664033 Irkutsk, Russia. 4Institute of Cytology of the Russian Academy of Sciences, 194064 St.Petersburg, Russia. SUMMARY: The history of research on species of Pachycordyle and related genera is discussed. A description and differ- ential diagnosis of a new species, Pachycordyle kubotai, is presented. Hydroid colonies, hydranths, and gonophores of this species are described in detail. Peculiarities of medusoid development and oocyte maturation are analyzed. The genus Pachycordyle is rediagnosed and an identification key to species assigned to it is provided. Clavopsella is regarded as con- generic with Pachycordyle. Thieliana is established as a new genus for species subsequently and erroneously assigned to Clavopsella. The taxonomic status of species referable to Thieliana is discussed. Justification is provided for our position that these genera belong to the family Clavidae. Characteristics of genera assigned to the family Clavidae are summarized. Data on the geographic distribution and ecology of the species of Cordylophora, Pachycordyle, and Thieliana, referred here to the subfamily Cordylophorinae, are presented.
    [Show full text]
  • Two Phylogenetic Lines of Coelenterates from the Viewpoint of Symmetry (With 4 Text-Figures)
    Title Two Phylogenetic Lines of Coelenterates from the Viewpoint of Symmetry (With 4 Text-figures) Author(s) UCHIDA, Tohru Citation 北海道大學理學部紀要, 15(2), 276-283 Issue Date 1963-03 Doc URL http://hdl.handle.net/2115/27373 Type bulletin (article) File Information 15(2)_P276-283.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Two Phylogenetic Lines of Coelenterates from the Viewpoint of Symmetryl) By Tohru Uchida Zoological Institute, Hokkaido University (With 4 Text-figures) The morphological features of adult Ooelenterates and Echinoderms are often reported that they are radially symmetrical. But it seems to be phylogeneti­ cally reasonable to take consideration of developmental processes for the discussion of animal symmetry. For instance, the Echinoderms show pentamerous radial symmetry in the adult but their larvae are generally bilaterally symmetrical. Moreover, the radial symmetry of the adult is obviously secondarily derived: the left larval mesocoel develops and forms the pentamerous circular canals, and subsequently pentaradiate animals are formed. In reference to the developmental processes the Hydrozoa and Scyphozoa are evidently animals of radial symmetry, while the Anthozoa are those of bilateral symmetry. Firstly the Hydrozoa are radially symmetrical in their polyps and also in medusae. Hydropolyps are furnished with a round mouth and one or two whorls of tentacles, which are arranged radially. A few bilateral forms such as Branchiocerianthus and Proboscidactyla (=Lar) may be derived from the typical form. Young polyps are generally observed to have four tentacles. But sometimes these tentacles do not appear synchronously; often one opposing pair proceeds the other pair. It is generally admitted that the most primitive hydromedusa is represented by the anthomedusan genus Sarsia.
    [Show full text]
  • Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria) Paulyn Cartwright1, Nathaniel M
    Journal of the Marine Biological Association of the United Kingdom, page 1 of 10. #2008 Marine Biological Association of the United Kingdom doi:10.1017/S0025315408002257 Printed in the United Kingdom Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria) paulyn cartwright1, nathaniel m. evans1, casey w. dunn2, antonio c. marques3, maria pia miglietta4, peter schuchert5 and allen g. collins6 1Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66049, USA, 2Department of Ecology and Evolutionary Biology, Brown University, Providence RI 02912, USA, 3Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, SP, Brazil, 4Department of Biology, Pennsylvania State University, University Park, PA 16802, USA, 5Muse´um d’Histoire Naturelle, CH-1211, Gene`ve, Switzerland, 6National Systematics Laboratory of NOAA Fisheries Service, NMNH, Smithsonian Institution, Washington, DC 20013, USA Hydroidolina is a group of hydrozoans that includes Anthoathecata, Leptothecata and Siphonophorae. Previous phylogenetic analyses show strong support for Hydroidolina monophyly, but the relationships between and within its subgroups remain uncertain. In an effort to further clarify hydroidolinan relationships, we performed phylogenetic analyses on 97 hydroidolinan taxa, using DNA sequences from partial mitochondrial 16S rDNA, nearly complete nuclear 18S rDNA and nearly complete nuclear 28S rDNA. Our findings are consistent with previous analyses that support monophyly of Siphonophorae and Leptothecata and do not support monophyly of Anthoathecata nor its component subgroups, Filifera and Capitata. Instead, within Anthoathecata, we find support for four separate filiferan clades and two separate capitate clades (Aplanulata and Capitata sensu stricto). Our data however, lack any substantive support for discerning relationships between these eight distinct hydroidolinan clades.
    [Show full text]
  • Hermit Crabs - Paguridae and Diogenidae
    Identification Guide to Marine Invertebrates of Texas by Brenda Bowling Texas Parks and Wildlife Department April 12, 2019 Version 4 Page 1 Marine Crabs of Texas Mole crab Yellow box crab Giant hermit Surf hermit Lepidopa benedicti Calappa sulcata Petrochirus diogenes Isocheles wurdemanni Family Albuneidae Family Calappidae Family Diogenidae Family Diogenidae Blue-spot hermit Thinstripe hermit Blue land crab Flecked box crab Paguristes hummi Clibanarius vittatus Cardisoma guanhumi Hepatus pudibundus Family Diogenidae Family Diogenidae Family Gecarcinidae Family Hepatidae Calico box crab Puerto Rican sand crab False arrow crab Pink purse crab Hepatus epheliticus Emerita portoricensis Metoporhaphis calcarata Persephona crinita Family Hepatidae Family Hippidae Family Inachidae Family Leucosiidae Mottled purse crab Stone crab Red-jointed fiddler crab Atlantic ghost crab Persephona mediterranea Menippe adina Uca minax Ocypode quadrata Family Leucosiidae Family Menippidae Family Ocypodidae Family Ocypodidae Mudflat fiddler crab Spined fiddler crab Longwrist hermit Flatclaw hermit Uca rapax Uca spinicarpa Pagurus longicarpus Pagurus pollicaris Family Ocypodidae Family Ocypodidae Family Paguridae Family Paguridae Dimpled hermit Brown banded hermit Flatback mud crab Estuarine mud crab Pagurus impressus Pagurus annulipes Eurypanopeus depressus Rithropanopeus harrisii Family Paguridae Family Paguridae Family Panopeidae Family Panopeidae Page 2 Smooth mud crab Gulf grassflat crab Oystershell mud crab Saltmarsh mud crab Hexapanopeus angustifrons Dyspanopeus
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles A hydroid (Pachycordyle navis) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Nicola White 2005-06-24 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1152]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: White, N. 2005. Pachycordyle navis A hydroid. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1152.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2005-06-24 A hydroid (Pachycordyle navis) - Marine Life Information Network See online review for distribution map Pachycordyle navis on Ruppia, Goesse Meer, The Netherlands.
    [Show full text]
  • On a Collection of Hydroids (Cnidaria, Hydrozoa) from the Southwest Coast of Florida, USA
    Zootaxa 4689 (1): 001–141 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4689.1.1 http://zoobank.org/urn:lsid:zoobank.org:act:4C926BE2-D75D-449A-9EAD-14CADACFFADD ZOOTAXA 4689 On a collection of hydroids (Cnidaria, Hydrozoa) from the southwest coast of Florida, USA DALE R. CALDER1, 2 1Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada M5S 2C6 E-mail: [email protected] 2Research Associate, Royal British Columbia Museum, 675 Belleville Street, Victoria, British Columbia, Canada V8W 9W2. Magnolia Press Auckland, New Zealand Accepted by B. Bentlage: 9 Sept.. 2019; published: 25 Oct. 2019 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 DALE R. CALDER On a collection of hydroids (Cnidaria, Hydrozoa) from the southwest coast of Florida, USA (Zootaxa 4689) 141 pp.; 30 cm. 25 Oct. 2019 ISBN 978-1-77670-799-7 (paperback) ISBN 978-1-77670-800-0 (Online edition) FIRST PUBLISHED IN 2019 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] https://www.mapress.com/j/zt © 2019 Magnolia Press ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4689 (1) © 2019 Magnolia Press CALDER Table of Contents Abstract ...................................................................................................5 Introduction ................................................................................................5
    [Show full text]
  • Cnidaria, Hydrozoa, Hydroidolina) from the West Coast of Sweden, with a Checklist of Species from the Region
    Zootaxa 3171: 1–77 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 3171 On a collection of hydroids (Cnidaria, Hydrozoa, Hydroidolina) from the west coast of Sweden, with a checklist of species from the region DALE R. CALDER Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada M5S 2C6 E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by A. Collins: 30 Nov. 2011; published: 24 Jan. 2012 Dale R. Calder On a collection of hydroids (Cnidaria, Hydrozoa, Hydroidolina) from the west coast of Sweden, with a checklist of species from the region (Zootaxa 3171) 77 pp.; 30 cm. 24 Jan. 2012 ISBN 978-1-86977-855-2 (paperback) ISBN 978-1-86977-856-9 (Online edition) FIRST PUBLISHED IN 2012 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2012 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3171 © 2012 Magnolia Press CALDER Table of contents Abstract . 4 Introduction . 4 Material and methods .
    [Show full text]
  • A Manual of Previously Recorded Non-Indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States
    A Manual of Previously Recorded Non- indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States NOAA Technical Memorandum NOS NCCOS 77 ii Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States government. Citation for this report: Megan O’Connor, Christopher Hawkins and David K. Loomis. 2008. A Manual of Previously Recorded Non-indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States. NOAA Technical Memorandum NOS NCCOS 77, 82 pp. iii A Manual of Previously Recorded Non- indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States. Megan O’Connor, Christopher Hawkins and David K. Loomis. Human Dimensions Research Unit Department of Natural Resources Conservation University of Massachusetts-Amherst Amherst, MA 01003 NOAA Technical Memorandum NOS NCCOS 77 June 2008 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Carlos M. Gutierrez Conrad C. Lautenbacher, Jr. John H. Dunnigan Secretary Administrator Assistant Administrator i TABLE OF CONTENTS SECTION PAGE Manual Description ii A List of Websites Providing Extensive 1 Information on Aquatic Invasive Species Major Taxonomic Groups of Invasive 4 Exotic and Native Transplanted Species, And General Socio-Economic Impacts Caused By Their Invasion Non-Indigenous and Native Transplanted 7 Species by Geographic Region: Description of Tables Table 1. Invasive Aquatic Animals Located 10 In The Great Lakes Region Table 2. Invasive Marine and Estuarine 19 Aquatic Animals Located From Maine To Virginia Table 3. Invasive Marine and Estuarine 23 Aquatic Animals Located From North Carolina to Texas Table 4.
    [Show full text]