2013 IEEE 21st International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems Performance and Energy Consumption of Lossless Compression/Decompression Utilities on Mobile Computing Platforms Aleksandar Milenkovi, Armen Dzhagaryan Martin Burtscher Department of Electrical and Computer Engineering Department of Computer Science The University of Alabama in Huntsville Texas State University-San Marcos Huntsville, AL, U.S.A. San Marcos, TX, U.S.A. {milenka, aad002}@uah.edu
[email protected] Abstract—Data compression and decompression utilities can be are in use, including dictionaries of expected or recently critical in increasing communication throughput, reducing encountered “words,” sliding windows that assume that communication latencies, achieving energy-efficient communi- recently seen data patterns will repeat, which are used in the cation, and making effective use of available storage. This Lempel-Ziv approach [3], as well as reversibly sorting data paper experimentally evaluates several such utilities for mul- to bring similar values close together, which is the approach tiple compression levels on systems that represent current taken by the Burrows and Wheeler transform [4]. The data mobile platforms. We characterize each utility in terms of its compression algorithms used in practice combine different compression ratio, compression and decompression through- models and coders, thereby favoring different types of inputs put, and energy efficiency. We consider different use cases that and representing different tradeoffs between speed and com- are typical for modern mobile environments. We find a wide pression ratio. Moreover, they typically allow the user to variety of energy costs associated with data compression and decompression and provide practical guidelines for selecting select the dictionary, window, or block size through a com- the most energy efficient configurations for each use case.