White Ball Acacia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Timbe (Acaciella Angustissima) Pods Extracts Reduce the Levels Of
molecules Article Timbe (Acaciella angustissima) Pods Extracts Reduce the Levels of Glucose, Insulin and Improved Physiological Parameters, Hypolipidemic Effect, Oxidative Stress and Renal Damage in Streptozotocin-Induced Diabetic Rats Adriana Jheny Rodríguez-Méndez 1,†, Wendy Carmen-Sandoval 1,†, Consuelo Lomas-Soria 2, Ramón G. Guevara-González 2, Rosalía Reynoso-Camacho 3, María Elena Villagran-Herrera 1, Luis Salazar-Olivo 4 , Irineo Torres-Pacheco 2 and Ana A. Feregrino-Pérez 2,* 1 Facultad de Medicina, Universidad Autónoma de Querétaro, Clavel No 200, Col. Prados de la Capilla, 76176 Querétaro, Mexico; [email protected] (A.J.R.-M.); [email protected] (W.C.-S.); [email protected] (M.E.V.-H.) 2 División de Estudios de Posgrado, C.A. Ingeniería de Biosistemas. Facultad de Ingeniería. Universidad Autónoma de Querétaro, C. U. Cerro de las Campanas, S/N, 76010 Querétaro, Mexico; [email protected] (C.L.-S.); [email protected] (R.G.G.-G.); [email protected] (I.T.-P.) 3 Departamento de Investigación y Posgrado en Alimentos, PROPAC, Facultad de Química, Universidad Autónoma de Querétaro, C. U. Cerro de las Campanas, S/N, 76010 Querétaro, Mexico; [email protected] 4 Instituto Potosino de Investigación Científica y Tecnológica, IPICYT, camino a la presa san José 2055, col. Lomas 4 sección, 78216, San Luis Potosí, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-01-442-192-12-00 (ext. 6016) † These authors contributed equally to this work. Received: 9 October 2018; Accepted: 26 October 2018; Published: 30 October 2018 Abstract: In Mexico one in 14 deaths are caused by diabetes mellitus (DM) or by the macro and microvascular disorders derived from it. -
Acacia Angustissima (Mill.) SCORE: 9.0 RATING: High Risk Kuntze
TAXON: Acacia angustissima (Mill.) SCORE: 9.0 RATING: High Risk Kuntze Taxon: Acacia angustissima (Mill.) Kuntze Family: Fabaceae Common Name(s): fern acacia Synonym(s): Acacia boliviana Rusby prairie acacia Acacia suffrutescens Rose Prairie wattle Acaciella angustissima (Mill.) Britton & Rose whiteball acacia Acaciella suffrutescens (Rose) Britton Mimosa& Rose angustissima Mill. Senegalia angustissima (Mill.) Pedley Assessor: Chuck Chimera Status: Assessor Approved End Date: 28 Jan 2016 WRA Score: 9.0 Designation: H(HPWRA) Rating: High Risk Keywords: Tropical Shrub, Weedy, Thicket-Forming, N-Fixing, Coppices Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix -
Genome of Rhizobium Leucaenae Strains CFN 299T and CPAO 29.8
Ormeño-Orrillo et al. BMC Genomics (2016) 17:534 DOI 10.1186/s12864-016-2859-z RESEARCHARTICLE Open Access Genome of Rhizobium leucaenae strains CFN 299T and CPAO 29.8: searching for genes related to a successful symbiotic performance under stressful conditions Ernesto Ormeño-Orrillo1†, Douglas Fabiano Gomes2,3†, Pablo del Cerro4, Ana Tereza Ribeiro Vasconcelos5, Carlos Canchaya6, Luiz Gonzaga Paula Almeida5, Fabio Martins Mercante7, Francisco Javier Ollero4, Manuel Megías4 and Mariangela Hungria2* Abstract Background: Common bean (Phaseolus vulgaris L.) is the most important legume cropped worldwide for food production and its agronomic performance can be greatly improved if the benefits from symbiotic nitrogen fixation are maximized. The legume is known for its high promiscuity in nodulating with several Rhizobium species, but those belonging to the Rhizobium tropici “group” are the most successful and efficient in fixing nitrogen in tropical acid soils. Rhizobium leucaenae belongs to this group, which is abundant in the Brazilian “Cerrados” soils and frequently submitted to several environmental stresses. Here we present the first high-quality genome drafts of R. leucaenae, including the type strain CFN 299T and the very efficient strain CPAO 29.8. Our main objective was to identify features that explain the successful capacity of R. leucaenae in nodulating common bean under stressful environmental conditions. Results: The genomes of R. leucaenae strains CFN 299T and CPAO 29.8 were estimated at 6.7–6.8 Mbp; 7015 and 6899 coding sequences (CDS) were predicted, respectively, 6264 of which are common to both strains. The genomes of both strains present a large number of CDS that may confer tolerance of high temperatures, acid soils, salinity and water deficiency. -
Annotated Checklist of the Butterflies of Bentsen-Rio Grande Valley State
AN ANNOTATED CHECKLIST OF THE BUTTERFLIES (LEPIDOPTERA: RHOPALOCERA) OF BENTSEN-RIO GRANDE STATE VALLEY PARK AND VICINITY JUNE, 1974 Published by TEXAS PARKS & WILDLIFE DEPARTMENT BENTSEN-RIO GRANDE VALLEY STATE PARK P.O. 30X 988; MISSION, TEXAS 78572 INTRODUCTION The species listed here in are primarily a result of the collecting by the authors during the period 1972-1973. Certain important records of the previous several years are also included. Additionally, the checklist incorporates records of a number of other lepidopterists. The primary focus of the checklist, then, is upon recent collecting, rather than being an attempt to list all known records from the Mid-Valley area. All lepidopterists collecting in the park and vicinity are urged to send copies of their records to the authors and/or the park authorities. A number of species on the list have been taken in Hidalgo Co. but not yet within the actual confines of the park; the annotations will indicate which species these are. Some of these have been taken at Santa Ana National Wildlife Refuge, approximately thirty miles down river, in habitats similar to those within the park. Others have been taken within several miles of the park, in nearby towns and along roadsides. These species can be reasonably expected to occur in the park, and their inclusion upon this list should alert the collector to their possible presence. The annotations have been kept necessarily brief. They are intended to aid the visiting lepidopterist in evaluating the significance of his catches. Local larval food plants are given where known. Much, however, is still to be learned regarding the life histories of even some of the commoner species. -
Extreme Diversity of Tropical Parasitoid Wasps Exposed by Iterative Integration of Natural History, DNA Barcoding, Morphology, and Collections
Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections M. Alex Smith*†, Josephine J. Rodriguez‡, James B. Whitfield‡, Andrew R. Deans§, Daniel H. Janzen†¶, Winnie Hallwachs¶, and Paul D. N. Hebert* *The Biodiversity Institute of Ontario, University of Guelph, Guelph Ontario, N1G 2W1 Canada; ‡Department of Entomology, 320 Morrill Hall, University of Illinois, 505 S. Goodwin Avenue, Urbana, IL 61801; §Department of Entomology, North Carolina State University, Campus Box 7613, 2301 Gardner Hall, Raleigh, NC 27695-7613; and ¶Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018 Contributed by Daniel H. Janzen, May 31, 2008 (sent for review April 18, 2008) We DNA barcoded 2,597 parasitoid wasps belonging to 6 microgas- A detailed recognition of species in parasitoid communities is trine braconid genera reared from parapatric tropical dry forest, cloud necessary because of the pivotal role parasitoids play in food web forest, and rain forest in Area de Conservacio´ n Guanacaste (ACG) in structure and dynamics. While generalizations about the effects of northwestern Costa Rica and combined these data with records of parasitoids on community diversity are complex (7), a common- caterpillar hosts and morphological analyses. We asked whether place predictor of the impact of a parasitoid species on local host barcoding and morphology discover the same provisional species and dynamics is whether the parasitoid is a generalist or specialist. A whether the biological entities revealed by our analysis are congruent generalist, especially a mobile one, is viewed as stabilizing food webs with wasp host specificity. Morphological analysis revealed 171 (see ref. -
Butterflies and Moths of Yavapai County, Arizona, United States
Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail -
Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt
plants Article Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt Rania A. Hassan * and Rim S. Hamdy Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; [email protected] * Correspondence: [email protected] Abstract: For the first time, an updated checklist of Acacia, Senegalia and Vachellia species in Egypt is provided, focusing on the exotic species. Taking into consideration the retypification of genus Acacia ratified at the Melbourne International Botanical Congress (IBC, 2011), a process of reclassification has taken place worldwide in recent years. The review of Acacia and its segregates in Egypt became necessary in light of the available information cited in classical works during the last century. In Egypt, various taxa formerly placed in Acacia s.l., have been transferred to Acacia s.s., Acaciella, Senegalia, Parasenegalia and Vachellia. The present study is a contribution towards clarifying the nomenclatural status of all recorded species of Acacia and its segregate genera. This study recorded 144 taxa (125 species and 19 infraspecific taxa). Only 14 taxa (four species and 10 infraspecific taxa) are indigenous to Egypt (included now under Senegalia and Vachellia). The other 130 taxa had been introduced to Egypt during the last century. Out of the 130 taxa, 79 taxa have been recorded in literature. The focus of this study is the remaining 51 exotic taxa that have been traced as living species in Egyptian gardens or as herbarium specimens in Egyptian herbaria. The studied exotic taxa are accommodated under Acacia s.s. (24 taxa), Senegalia (14 taxa) and Vachellia (13 taxa). -
Coordinated Resource Management Plan
APPLETON-WHITTELL RESEARCH RANCH COORDINATED RESOURCE MANAGEMENT PLAN The Research Ranch was established in 1968 by the Appleton family as an ecological field station to provide a large scale exclosure by which various land uses and actions in the Southwest could be evaluated. This role, as a control or reference area, creates challenges to land management actions. Each proposed action must be judged not only on the conservation outcome but also on the potential to have adverse impact on the research values for which the field station was established. Effective management for both conservation and research is only possible if all partners are informed and involved. The Research Ranch, approximately 8,000 acres, is a complicated partnership among land owners and federal land administrative agencies: Coronado National Forest (CNF), Bureau of Land Management (BLM), Resolution Copper Mining Co. (RCM), The Research Ranch Foundation (TRRF), The Nature Conservancy (TNC), and National Audubon Society (NAS or Audubon). NAS manages the facility via contractual agreements with each entity. The Research Ranch is a Center/Sanctuary of NAS, administered through the Audubon Arizona state office in Phoenix. Audubon’s strategic plan is to achieve conservation results on a broad scale by leveraging the NAS network and engaging diverse people; the Research Ranch is evaluated by NAS for its support of the following conservation concerns: Climate Change, Water, Working Lands and Bird Friendly Communities. This Coordinated Resource Management Plan (CRMP) constitutes all ownership along with the Natural Resources Conservation Service (NRCS), Arizona Game & Fish Department (AZGF) and US Fish & Wildlife Service (USFWS). Planned practices to meet goals listed in this CRMP may not necessarily be implemented on all parcels. -
Final Lower Rio Grande Valley and Santa Ana National Wildlife
Final Lower Rio Grande Valley and Santa Ana National Wildlife Refuges Comprehensive Conservation Plan September 1997 (Reprint March 1999) U.S. Fish and Wildlife Service U.S. Department of the Interior Cover Artwork by Brian Cobble Table of Contents VISION........................................................................................................................................... 5 Executive Summary................................................................................................................... 6 1.0 Introduction and Regional Setting................................................................................. 8 1.1 LRGV Challenges............................................................................................... 8 2.0 Planning Perspectives and Considerations................................................................ 9 2.1 National Wildlife Refuge System ................................................................... 9 2.2 The Service & Ecosystem Management ...................................................... 9 2.3 Refuge Complex and Management Districts........................................... 10 2.4 Laguna Atascosa NWR -- A Partner with LRGV NWR............................ 10 2.5 Planning Perspectives.................................................................................... 10 2.6 The Issues.......................................................................................................... 11 2.7 The Need for Action........................................................................................ -
North American Butterfly Association
NORTH AMERICAN BUTTERFLY ASSOCIATION 4 Delaware Road, Morristown, NJ 07960 tel. 973-285-0907 fax 973-285-0936 web: www.naba.org ANNUAL NABA BUTTERFLY COUNT - INSTRUCTIONS (USA) This printed count forms is for field use only. All counts must submit their results using the online data entry system. Please contact the NABA Count Program if you have questions or concerns. Please report your count results directly to NABA Timing/Requirements for United through our online count form at www.butterflycounts.org. Stated Counts The online form allows compilers to enter all data for their Count NABA 4th of July Butterfly Count: A minimum of four counts through the Web and also allows the regional editors adult observers AND 6 party-hours per count are Date of REQUIRED for all counts started after 2008; and, to review and edit the reports efficiently. Most importantly, June or except in extenuating circumstances, ALL counts should Butterfly Count information will be entered and stored in a July expend at least 6 party-hours of effort. database which in the future will allow it to be available Count online to NABA members and the public. If entering your Date other NABA Seasonal Butterfly Count: A minimum of four adult observers AND 6 party-hours per count is data through the online count form presents any difficulty, than June REQUIRED. please contact NABA for assistance. or July COUNT PROGRAM OVERVIEW DATE OF NEXT YEAR'S COUNT In order to encourage increased participation in the Please contact NABA (at address/phone above, or e-mail NABA Butterfly Count Program and to encourage even more to ) with the date of your next year's monitoring possibilities, the NABA Board of Directors [email protected] authorized the introduction of Seasonal Butterfly Counts in count and information on how to contact the compiler. -
Potential of Acacia Angustissima, Leucaena Pallida and Mimosa
3RWHQWLDORIAcacia angustissima, Leucaena pallida DQG Mimosa scabrella LQ$JURIRUHVWU\6\VWHPVRQD5ZDQGDQ )HUUDOVRO 0DUJXHULWH 0XNDQJDQJR Faculty of Natural Resources and Agricultural Sciences Department of Soil and Environment Uppsala 'RFWRUDOWKHVLV 6ZHGLVK8QLYHUVLW\RI$JULFXOWXUDO6FLHQFHV 8SSVDOD $FWD8QLYHUVLWDWLV$JULFXOWXUDH6XHFLDH &RYHU([SHULPHQWDODJURIRUHVWU\ VSHFLHV SKRWR0DUJXHULWH0XNDQJDQJR ,661 ,6%1 SULQWYHUVLRQ ,6%1 HOHFWURQLFYHUVLRQ 0DUJXHULWH0XNDQJDQJR8SSVDOD 3ULQW6/86HUYLFH5HSUR8SSVDOD 3RWHQWLDORIAcacia angustissima Leucaena pallida DQGMimosa scabrella LQDJURIRUHVWU\V\VWHPVRQD 5ZDQGDQ)HUUDOVRO $EVWUDFW $JURIRUHVWU\XVLQJFRSSLFLQJOHJXPHWUHHVDQGVKUXEVLVDZD\WRLPSURYHOLYHVWRFN IRGGHU TXDOLW\ DQG VRLO IHUWLOLW\ LQ WKH WURSLFV +RZHYHU WUHH HVWDEOLVKPHQW DQG DSSURSULDWH PDQDJHPHQW DUH FKDOOHQJLQJ KDPSHULQJ WKHLU LQWHJUDWLRQ LQWR DJULFXOWXUH DQG OLYHVWRFN V\VWHPV 7KLV WKHVLV HYDOXDWHV WKH ELRPDVV SURGXFWLRQ E\ Acacia angustissima Leucaena pallida DQGMimosa scabrella OHJXPHWUHHVSHFLHVJURZQRQD )HUUDOVROLQ6RXWKHUQ5ZDQGDGHWHUPLQHV WKHLUHIIHFWVRQIRGGHUTXDOLW\ DQGDVVHVVHV WKH IHUWLOLVHU TXDOLW\ RI WKH UHVXOWLQJ PDQXUH DQGLWVHIIHFWRQDPDL]H FURS \LHOGDQG WKH IHUWLOLW\VWDWXVRID5ZDQGDQ )HUUDOVRO ,Q ILHOG VWXGLHV ELRPDVV SURGXFWLRQ DQG QXWULWLYH YDOXH RI WKH WKUHH DJURIRUHVWU\ VSHFLHVZKHQVXEMHFWHGWRDQGPFXWWLQJKHLJKWZHUHGHWHUPLQHGDQGWKHHIIHFWV RI PLFURGRVLQJ PDQXUH IHUWLOLVHU DQG OLPH RQ VRLO SURSHUWLHV DQG PDL]H \LHOG ZHUH H[DPLQHG +LJKHU ELRPDVV SURGXFWLRQ ZDV JHQHUDOO\ IRXQG DW ORZHU FXWWLQJ KHLJKW Acacia angustissima KDG WKH KLJKHVW ELRPDVV -
(Lepidoptera) Europe PMC Funders Group
Europe PMC Funders Group Author Manuscript J Res Lepid. Author manuscript; available in PMC 2015 April 29. Published in final edited form as: J Res Lepid. 2014 December 1; 47: 65–71. Europe PMC Funders Author Manuscripts Evolution of extreme proboscis lengths in Neotropical Hesperiidae (Lepidoptera) J. A.-S. Bauder*,1, A. D. Warren2, and H. W. Krenn1 1Department of Integrative Zoology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria 2McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, U.S.A. Abstract Exaggerated morphologies have evolved in insects as adaptations to nectar feeding by natural selection. For example, the suctorial mouthparts of butterflies enable these insects to gain access to floral nectar concealed inside deep floral tubes. Proboscis length in Lepidoptera is known to scale with body size, but whether extreme absolute proboscis lengths of nectar feeding butterflies result from a proportional or disproportional increase with body size that differs between phylogenetic lineages remains unknown. We surveyed the range of variation that occurs in scaling relationships between proboscis length and body size against a phylogenetic background among Costa Rican Hesperiidae. We obtained a new record holder for the longest proboscis in butterflies and showed that extremely long proboscides evolved at least three times independently within Europe PMC Funders Author Manuscripts Neotropical Hesperiidae. We conclude that the evolution of extremely long proboscides results from allometric scaling with body size, as demonstrated in hawk moths. We hypothesize that constraints on the evolution of increasingly long butterfly proboscides may come from (1) the underlying scaling relationships, i.e., relative proboscis length, combined with the butterfly’s flight style and flower-visiting behaviour and/or (2) developmental constraints during the pupal phase.