Screening for Cardiovascular Disease Risk with Electrocardiography: an Evidence Review for the U.S

Total Page:16

File Type:pdf, Size:1020Kb

Screening for Cardiovascular Disease Risk with Electrocardiography: an Evidence Review for the U.S Evidence Synthesis Number 163 Screening for Cardiovascular Disease Risk With Electrocardiography: An Evidence Review for the U.S. Preventive Services Task Force Pre pare d for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov Contract No. HHSA-290-2015-00011-I, Task Orde r No. 5 Prepared by: RTI International–University of North Carolina at Chapel Hill Evidence-based Practice Center Research Triangle Park, NC Investigators: Daniel E. Jonas, MD, MPH Shivani Reddy, MD, MSc Jennifer Cook Middleton, PhD Colleen Barclay, MPH Joshua Green, BA Claire Baker Gary Asher, MD, MPH AHRQ Publication No. 17-05235-EF-1 June 2018 This report is based on research conducted by the RTI International–University of North Carolina at Chapel Hill Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. HHSA-290-2015- 00011-I, Task Order No. 5). The findings and conclusions in this document are those of the authors, who are responsible for its contents, and do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information (i.e., in the context of available resources and circumstances presented by individual patients). This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied. None of the investigators has any affiliations or financial involvement that conflicts with the material presented in this report. Acknowledgments The authors gratefully acknowledge the following individuals for their contributions to this project and deeply appreciate their considerable support, commitment, and contributions: Howard Tracer, MD, AHRQ Medical Officer, and Elisabeth Kato, MD, MRP, former AHRQ Medical Officer; Tracy Wolff, MD, MPH, AHRQ Associate Scientific Director; current and former members of the U.S. Preventive Services Task Force who contributed to topic deliberations; expert reviewers Joy Melnikow, MD, MPH, Amit Shah, MD, Fabrizio Turrini, MD, and Timothy Wilt, MD; federal partner reviewers at the National Institutes of Health; and RTI International–University of North Carolina EPC staff Carol Woodell, BSPH, Christiane Voisin, MSLS, Laurie Leadbetter, MSLS, Sharon Barrell, MA, and Loraine Monroe, publications specialist. Suggested Citation Jonas DE, Reddy S, Middleton JC, Barclay C, Green J, Baker C, Asher G. Screening for Cardiovascular Disease Risk With Electrocardiography: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 163. AHRQ Publication No. 17-05235- EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2018. Screening for CVD Ri sk Wi th ECG ii RTI–UNC EPC Structured Abstract Purpose: To systematically review the evidence on screening asymptomatic adults for cardiovascular disease (CVD) risk using resting or exercise electrocardiography (ECG) for populations and settings relevant to primary care in the United States. Data Sources: PubMed/MEDLINE, the Cochrane Library, and trial registries through May 30, 2017; reference lists of retrieved articles; outside experts; and reviewers, with surveillance of the literature through April 4, 2018. Study Selection: Two investigators selected English-language studies using a priori criteria. Eligible studies focused on the use of resting or exercise ECG for adults without symptoms or a diagnosis of CVD. Eligible designs included controlled trials comparing ECG screening with no ECG screening and prospective cohort studies reporting reclassification, calibration, or discriminat ion that compared risk assessment using ECG plus traditional risk factors versus traditional risk factors alone. For harms of ECG, prospective cohort studies, large retrospective cohort studies, and case-control studies were also eligible. For harms from exercise ECG or subsequent procedures/interventions, large registries or multicenter studies without a control group were also eligible. Data Extraction: One investigator extracted data and a second checked accuracy. Two reviewers independently rated quality for all included studies using predefined criteria. Data Synthesis: Sixteen studies (77,140 participants) were included. Two randomized, controlled trials (RCTs) (1,151 participants) found no significant improvement in all-cause mortality, cardiovascular-related mortality, myocardial infarction (MI), heart failure, or stroke for screening with exercise ECG in asymptomatic adults ages 50 to 75 years with diabetes compared with no screening. In addition, there was no significant improvement for their primary composite outcomes (hazard ratio [HR] 1.00 [95% confidence interval [CI], 0.59 to 1.71] for all- cause mortality, nonfatal MI, nonfatal stroke, or heart failure requiring hospitalization or emergency service intervention, and HR 0.85 [95% CI, 0.39 to 1.84] for nonfatal MI or cardiac death). No controlled trials evaluated screening with resting ECG. Although potential harms of exercise or resting ECG include arrhythmias, acute MI, sudden cardiac death, and harms of subsequent angiography or revascularization procedures after an abnormal test, evidence on their frequency in asymptomatic persons was scant. Evidence from five cohort studies (9,582 participants; mean baseline Framingham Risk Score [FRS] 10.8 to 12.3 in studies reporting it) shows that the addition of exercise ECG abnormalities to traditional CVD risk factors results in small improvements in discrimination (absolute improvement in area under the curve [AUC] or C-statistics 0.02 to 0.03; 95% CIs rarely reported), but it is uncertain whether calibration or appropriate risk classification improves. Evidence from nine cohort studies (66,407 participants; mean baseline risk ranging from low to high across studies) shows that the addition of resting ECG findings to traditional CVD risk factors results in very small or small improvements in discrimination (absolute improvement in AUC or C-statistics 0.001 to 0.05) and improvements for calibration and appropriate risk classification for prediction of multiple outcomes (e.g., all- cause mortality, CVD mortality, CHD events). Total net reclassification improvements (event; Screening for CVD Ri sk Wi th ECG iii RTI–UNC EPC nonevent) ranged from 3.6 percent (2.7%; 0.6%) to 30 percent (17%; 19%) for studies using Framingham Risk Score (FRS) or pooled cohort equations (PCE) base models (95% CIs were rarely reported). Limitations: The RCTs that evaluated exercise ECG in asymptomatic diabetic patients did not reach sample size targets and were stopped early because of trouble recruiting; both followed participants for about 3.5 years. For risk prediction with the addition of ECG, evidence was limited by imprecision, quality, and considerable heterogeneity. Consistency of findings for specific risk thresholds is unknown because all studies used different risk categories. About half of the included risk prediction studies did not use the published coefficients of externally validated base models such as FRS or PCE; only one used the PCE as a base model. For risk prediction with resting ECG, it is unclear what proportion of participants was truly asymptomatic because most studies did not report any assessment of symptoms. Conclusions: The overall strength of evidence was low or insufficient for each of the questions and outcomes evaluated. RCTs of screening with exercise ECG in asymptomatic participants found no improvement in health outcomes despite focusing on higher risk populations with diabetes. For asymptomatic persons without a history of CVD, the harms of exercise or resting ECG can include arrhythmias, acute MI, sudden cardiac death, and harms of subsequent angiography or revascularization procedures after an abnormal test, but the frequency of these harms is uncertain. Evidence on whether the addition of exercise ECG to traditional CVD risk factors results in accurate reclassification is lacking. Cohort studies found that the addition of multiple resting ECG abnormalities to traditional CVD risk factors accurately reclassifies persons, and improves discriminat ion and calibration, but evidence was limited by imprecision, quality, considerable heterogeneity, and inconsistent use of risk thresholds that align with clinical decisions and recommendations. Screening for CVD Ri sk Wi th ECG iv RTI–UNC EPC Table of Contents Chapter 1. Introduction......................................................................................................... 1 Scope and Purpose ............................................................................................................... 1 Condition Definition ...........................................................................................................
Recommended publications
  • Good Quality Care Increases Hospital Profits Under Prospective Payment by David C
    Good quality care increases hospital profits under prospective payment by David C. Hsia and Cathaleen A. Ahern This study shows that, contrary to popular belief, the overlooked because ofthis skimping. After deduction prospective payment system discourages skimping on for the cost ofthe omitted services and probability of medically indicated care. The quality ofcare on a negative diagnostic tests, good quality care would have nationally representative sample ofMedicare discharges increased hospital profits a significant 7.9 percent. As underwentjudgmental review using implicit criteria. the specificity ofdiagnosis and intensity oftreatment The reviewing physicians identified hospitalizations that increase, the DRG payment rises faster than the cost of omitted medically indicated services and diagnoses providing medically indicated services. Background Classification ofDiseases 9th Revision, Clinical Modification (ICD-9-CM) numeric codes (Public Since October 1, 1983, Medicare has used a Health Service and Health Care Financing prospective payment system (PPS) to pay hospitals for Administration, 1980). The fiscal intermediary groups inpatient care, as required by the Social Security the ICD-9-CM codes to the proper DRG, converts the Amendments of 1983. Each discharge's diagnoses and corresponding relative weight to a dollar amount (with procedures "group" it to one of 477 diagnosis-related certain minor adjustments for hospital-specific factors), groups (DRGs). The Health Care Financing and pays the hospital (Averill et al., 1986). Administration (HCFA) pays the hospital a fixed Omission of medically indicated procedures could amount representing the average cost for that DRG's cause diagnostic uncertainty and may therefore produce discharges (Code ofFederal Regulations, 1988). The vague ICD-9-CM codes (e.g., the classic weak, tired, hospital retains surpluses from discharges that cost it and dizzy).
    [Show full text]
  • J Wave Syndromes
    Review Article http://dx.doi.org/10.4070/kcj.2016.46.5.601 Print ISSN 1738-5520 • On-line ISSN 1738-5555 Korean Circulation Journal J Wave Syndromes: History and Current Controversies Tong Liu, MD1, Jifeng Zheng, MD2, and Gan-Xin Yan, MD3,4 1Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, 2Department of cardiology, The Second Hospital of Jiaxing, Jiaxing, China, 3Lankenau Institute for Medical Research and Lankenau Medical Center, Wynnewood, Pennsylvania, USA, 4The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China The concept of J wave syndromes was first proposed in 2004 by Yan et al for a spectrum of electrocardiographic (ECG) manifestations of prominent J waves that are associated with a potential to predispose affected individuals to ventricular fibrillation (VF). Although the concept of J wave syndromes is widely used and accepted, there has been tremendous debate over the definition of J wave, its ionic and cellular basis and arrhythmogenic mechanism. In this review article, we attempted to discuss the history from which the concept of J wave syndromes (JWS) is evolved and current controversies in JWS. (Korean Circ J 2016;46(5):601-609) KEY WORDS: Brugada syndrome; Sudden cardiac death; Ventricular fibrillation. Introduction History of J wave and J wave syndromes The concept of J wave syndromes was first proposed in 2004 The J wave is a positive deflection seen at the end of the QRS by Yan et al.1) for a spectrum of electrocardiographic (ECG) complex; it may stand as a distinct “delta” wave following the QRS, manifestations of prominent J waves that are associated with a or be partially buried inside the QRS as QRS notching or slurring.
    [Show full text]
  • Screening for Peripheral Artery Disease and Cardiovascular Disease Risk Assessment with Ankle Brachial Index in Adults the U.S
    Understanding Task Force Recommendations Screening for Peripheral Artery Disease and Cardiovascular Disease Risk Assessment with Ankle Brachial Index in Adults The U.S. Preventive Services Task Force (Task The Task Force reviewed the use of ABI to screen for Force) has issued a final recommendation statement PAD and to predict a person’s risk of heart attacks on Screening for Peripheral Artery Disease (PAD) and stroke. The final recommendation statement and Cardiovascular Disease (CVD) Risk Assessment summarizes what the Task Force learned about with Ankle Brachial Index (ABI) in Adults. the potential benefits and harms of this screening: There is not enough evidence to judge the benefits This final recommendation statement applies to and harms of using ABI for this purpose. adults who do not have signs or symptoms of PAD and who have not been diagnosed with PAD, CVD, This fact sheet explains the recommendation and severe chronic kidney disease, or diabetes. what it might mean for you. PAD is a disease in which fatty deposits called plaque build up in What is peripheral the arteries, especially those in the legs. Over time, the plaque can block the flow of blood to the legs often artery disease? leading to pain with walking. What is Cardiovascular disease affects the heart and blood vessels. It is caused by a build up of plaque in arteries that supply the heart, brain, and cardiovascular other parts of the body. When the build up is in the legs it is called disease? PAD. Heart attacks and strokes are other common types of CVD. Facts About CVD and PAD Cardiovascular disease is the leading killer of both men and women in the United States.
    [Show full text]
  • Cardiovascular Disease and Rehab
    EXERCISE AND CARDIOVASCULAR ! CARDIOVASCULAR DISEASE Exercise plays a significant role in the prevention and rehabilitation of cardiovascular diseases. High blood pressure, high cholesterol, diabetes and obesity can all be positively affected by an appropriate and regular exercise program which in turn benefits cardiovascular health. Cardiovascular disease can come in many forms including: Acute coronary syndromes (coronary artery disease), myocardial ischemia, myocardial infarction (MI), Peripheral artery disease and more. Exercise can improve cardiovascular endurance and can improve overall quality of life. If you have had a cardiac event and are ready to start an appropriate exercise plan, Cardiac Rehabilitation may be the best option for you. Please call 317-745-3580 (Danville Hospital campus), 317-718-2454 (YMCA Avon campus) or 317-456-9058 (Brownsburg Hospital campus) for more information. SAFETY PRECAUTIONS • Ask your healthcare team which activities are most appropriate for you. • If prescribed nitroglycerine, always carry it with you especially during exercise and take all other medications as prescribed. • Start slow and gradually progress. If active before event, fitness levels may be significantly lower – listen to your body. A longer cool down may reduce complications. • Stop exercising immediately if you experience chest pain, fatigue, or labored breathing. • Avoid exercising in extreme weather conditions. • Drink plenty of water before, during, and after exercise. • Wear a medical identification bracelet, necklace, or ID tag in case of emergency. • Wear proper fitting shoes and socks, and check feet after exercise. STANDARD GUIDELINES F – 3-5 days a week. Include low weight resistance training 2 days/week I – 40-80% of exercise capacity using the heart rate reserve (HRR) (220-age=HRmax; HRmax-HRrest = HRR) T – 20-60mins/session, may start with sessions of 5-15 mins if necessary T – Large rhythmic muscle group activities that are low impact (walking, swimming, biking) Get wellness tips to keep YOU healthy at HENDRICKS.ORG/SOCIAL..
    [Show full text]
  • Using Vectorcardiography in Cardiac Resynchronization Therapy
    Using Vectorcardiography In Cardiac Resynchronization Therapy By L.Lindeboom BMTE 10.19 Report Internship Catharina Hospital Eindhoven Eindhoven University of Technology Supervisors Dr. Ir. M. van ‘t Veer Dr. B.M. van Gelder Dr. Ir. M.C.M. Rutten Prof. Dr. N.H.J. Pijls 1 Abstract (English) The conductive system of the heart may be affected by a heart disease due to direct damage of the Purkinje bundle branches or by a changed geometry in a dilated heart. As a result the electrical activation impulse will no longer travel across the preferred pathway and a loss of ventricular synchrony, prolonged ventricular depolarization and a corresponding drop in the cardiac output is observed. During cardiac resynchronization therapy (CRT) a biventricular pacemaker is implanted, which is used to resynchronise the contraction between different parts of the myocardium. Optimize pacing lead placement and CRT device programming, is important to maximize the benefit for the selected patients. The use of vectorcardiography (VCG) for CRT optimization is investigated. In current clinical practice a 12-lead electrocardiogram (ECG) is used to measure the electric cardiac activity of a patient. Each cell in the heart can be represented as an electrical dipole with differing direction during a heartbeat. A collection of all cellular dipoles will result in a single dipole, the cardiac electrical vector. Spatial visualization of the intrinsically three- dimensional phenomena, using VCG, might allow for an improved interpretation of the electric cardiac activity as compared to the one dimensional projections of a scalar ECG. The VCG loops of one healthy subject and two subjects with a left bundle branch block (LBBB) and two subjects with a right bundle branch block (RBBB) are qualitatively described.
    [Show full text]
  • Mcfee and Parungao Orthogonal Lead Vectorcardiography in Normal Dogs C
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-1972 McFee and Parungao orthogonal lead vectorcardiography in normal dogs C. B. Chastain Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Chastain, C. B., "McFee and Parungao orthogonal lead vectorcardiography in normal dogs" (1972). Retrospective Theses and Dissertations. 17945. https://lib.dr.iastate.edu/rtd/17945 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. McFee and Parungao orthogonal lead vectorcardiography in normal dogs by Claud Blankenhorn Chastain A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of MASTER OF SCIENCE Major: Veterinary Clinical Sci ences Appr oved: Signatures have been redacted for privacy Iowa State University Ame s, Iowa 1972 ~ 1?C&R3 - ~­ l - I . ii ~r:,1 V J/- ;/; ~ (; . 5 .:< TABLE OF CONTENTS Page INTRODUCTION AND OBJECTIVES 1 LITERATURE EVALUATION 3 Evolution of Vectorcardiology 3 Comparison of Lead Systems 9 Normal Human Vectorcardiograms 10 Clinical Application 13 Vectorcardiography in the Canine 15 MATERIALS AND METHODS 19 Selection of Subjects and Recording Method 19 Storage and Reproduction of the QRS Loop 21 Evaluation of the QRS Loop 24 RESULTS 26 Magnitude and Orientation of Vectors 26 Statistical Analysis 28 DISCUSSION 29 SUMMARY AND CONCLUSIONS 36 LITERATURE CITED 39 ACKNOWLEDGMENTS 51 APPENDIX 52 1 INTRODUCTION AND OBJECTIVES I Vectorcardiography is a measurement of the direction, magnitude and orientation of the mean instantaneous voltage distributions of the heart.
    [Show full text]
  • Acute Coronary Syndrome
    Technology Assessment Systematic Review of ECG-based Signal Analysis Technologies for Evaluating Patients With Acute Coronary Syndrome Technology Assessment Program Prepared for: Agency for Healthcare Research and Quality October 2011 540 Gaither Road Rockville, Maryland 20850 Systematic Review of ECG-based Signal Analysis Technologies for Evaluating Patients With Acute Coronary Syndrome Technology Assessment Report Project ID: CRDD0311 October 2011 Duke Evidence-based Practice Center Remy R. Coeytaux, M.D., Ph.D. Philip J. Leisy, B.S. Galen S. Wagner, M.D. Amanda J. McBroom, Ph.D. Cynthia L. Green, Ph.D. Liz Wing, M.A. R. Julian Irvine, M.C.M. Gillian D. Sanders, Ph.D. DRAFT – Not for citation or dissemination This draft technology assessment is distributed solely for the purpose of peer review and/or discussion at the MedCAC meeting. It has not been otherwise disseminated by AHRQ. It does not represent and should not be construed to represent an AHRQ determination or policy. This report is based on research conducted by the Duke Evidence-based Practice Center under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. HHSA 290-2007-10066 I). The findings and conclusions in this document are those of the authors, who are responsible for its contents. The findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of the Agency for Healthcare Research and Quality or of the U.S. Department of Health and Human Services. None of the investigators has any affiliations or financial involvement related to the material presented in this report.
    [Show full text]
  • Cardiovascular Disease Session Guidelines
    Cardiovascular Disease Session Guidelines This is a 15 minute webinar session for CNC physicians and staff CNC holds webinars on the 3rd Wednesday of each month to address topics related to risk adjustment documentation and coding Next scheduled webinar: • Wednesday, February 28th • Topic: Respiratory Disease CNC does not accept responsibility or liability for any adverse outcome from this training for any reason including undetected inaccuracy, opinion, and analysis that might prove erroneous or amended, or the coder/physician’s misunderstanding or misapplication of topics. Application of the information in this training does not imply or guarantee claims payment. Agenda • Statistics • Amputation Status & Atherosclerosis • Angina Pectoris • Acute Myocardial Infarction • Specified Heart Arrhythmias • Congestive Heart Failure • Pulmonary Hypertension • Cardiomyopathy • Hypertensive Heart disease Statistics • Nearly 35 percent of Tarrant County and Dallas area deaths each year are attributed to cardiovascular disease. • About 610,000 people die of heart disease in the United States every year–that’s 1 in every 4 deaths • Heart disease is the leading cause of death for both men and women • Every year about 735,000 Americans have a heart attack. Of these, (approximately 70%) 525,000 are a first heart attack and (approximately 30%)210,000 happen in people who have already had a heart attack Amputations There are nearly 2 million people living with limb loss in the United States Approximately 185,000 amputations occur in the United States each
    [Show full text]
  • (VCG) Parameters for Analyzing Repolarization Variability in ECG Signals
    Biomed. Eng.-Biomed. Tech. 2016; 61(1): 3–17 Review Muhammad A. Hasan* and Derek Abbott A review of beat-to-beat vectorcardiographic (VCG) parameters for analyzing repolarization variability in ECG signals Abstract: Elevated ventricular repolarization lability is Introduction believed to be linked to the risk of ventricular tachycardia/ ventricular fibrillation. However, ventricular repolariza- The biological signals are generated within the human tion is a complex electrical phenomenon, and abnor- body through different physiological processes. These malities in ventricular repolarization are not completely signals are usually acquired in their raw form, and there- understood. To evaluate repolarization lability, vector- fore, it is required to carry out signal processing and cardiography (VCG) is an alternative approach where the analysis to reveal pertinent details. In the case of an electrocardiographic (ECG) signal can be considered as electrocardiographic (ECG) signal, the signal contains possessing both magnitude and direction. Recent research amplitude information without orientation of the heart has shown that VCG is advantageous over ECG signal vector direction. In clinical practice, the QT interval is analysis for identification of repolarization abnormality. measured as the duration of onset of Q wave and the One of the key reasons is that the VCG approach does not offset of T wave in the heart’s ECG electrical cycle, which rely on exact identification of the T-wave offset, which represents the global electrical repolarization of the ven- improves the reproducibility of the VCG technique. How- tricles. Note that QT-interval variability analysis from a ever, beat-to-beat variability in VCG is an emerging area single ECG beat demonstrates the static picture of repo- for the investigation of repolarization abnormality though larization abnormalities, but the beat-to-beat QT inter- not yet fully realized.
    [Show full text]
  • Proposed In-Training Electrocardiogram Interpretation Competencies for Undergraduate and Postgraduate Trainees
    REVIEW Proposed In-Training Electrocardiogram Interpretation Competencies for Undergraduate and Postgraduate Trainees Pavel Antiperovitch, MD, BSc1, Wojciech Zareba, MD, PhD2, Jonathan S. Steinberg, MD2,3, Ljuba Bacharova, MD, DSc, MBA4, Larisa G. Tereshchenko, MD, PhD5, Jeronimo Farre, MD, PhD, FESC6, Kjell Nikus, MD, PhD7, Takanori Ikeda, MD, PhD8, Adrian Baranchuk, MD, FACC, FRCPC FCCS1*, on behalf of the International Society of Electrocardiology and the International Society of Holter and Noninvasive Electrocardiology 1Department of Medicine, Kingston General Hospital, Queen’s University, Kingston, Ontario, Canada; 2Department of Medicine, University of Roch- ester Medical Center, University of Rochester, Rochester, New York; 3Arrhythmia Center, Summit Medical Group, Short Hills, New Jersey; 4Interna- tional Laser Center, Bratislava, Slovakia; 5Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; 6Department of Cardiology, Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; 7Heart Center, Tampere University Hospital, and Faculty of Medicine and Life Sciences, University of Tampere, Teiskontie, Finland; 8Department of Medicine, Toho University, Tokyo, Ota, Omorinishi, Japan. Despite its importance in everyday clinical practice, the trainees. Previous literature suggests that methods of ability of physicians to interpret electrocardiograms (ECGs) teaching ECG interpretation are less important and can is highly variable. ECG patterns are often misdiagnosed, be selected based on the available resources of each and electrocardiographic emergencies are frequently education program and student preference. The evidence missed, leading to adverse patient outcomes. Currently, clearly favors summative trainee evaluation methods, many medical education programs lack an organized which would facilitate learning and ensure that appropriate curriculum and competency assessment to ensure trainees competencies are acquired.
    [Show full text]
  • Feasibility of Non-Invasive Foetal Electrocardiography in a Twin Pregnancy Lore Noben1,2*, Michelle E
    Noben et al. BMC Pregnancy and Childbirth (2020) 20:215 https://doi.org/10.1186/s12884-020-02918-8 TECHNICAL ADVANCE Open Access Feasibility of non-invasive Foetal electrocardiography in a twin pregnancy Lore Noben1,2*, Michelle E. M. H. Westerhuis1,2, Judith O. E. H. van Laar1,2, René D. Kok3, S. Guid Oei1,2, Chris H. L. Peters4 and Rik Vullings5,2 Abstract Background: Twin pregnancy is associated with increased perinatal mortality. Close foetal monitoring is therefore warranted. Doppler Ultrasound cardiotocography is currently the only available method to monitor both individual foetuses. Unfortunately, the performance measures of this method are poor and erroneous monitoring of the same twin with both transducers may occur, leaving the second twin unmonitored. In this study we aimed to determine the feasibility of monitoring both foetuses simultaneously in twin gestation by means of non-invasive foetal electrocardiography (NI-fECG), using an electrode patch on the maternal abdomen. Methods: A NI-fECG recording was performed at 25 + 3 weeks of gestation on a multiparous woman pregnant with dichorionic diamniotic twins. An electrode patch consisting of eight adhesive electrodes was applied on the maternal abdomen, yielding six channels of bipolar electrophysiological measurements. The output was digitized and stored for offline processing. The recorded signals were preprocessed by suppression of high-frequency noise, baseline wander, and powerline interference. Secondly, the maternal ECG was subtracted and segmentation into individual ECG complexes was performed. Finally, ensemble averaging of these individual ECG complexes was performed to suppress interferences. Results: Six different recordings were obtained from each of the six recording channels.
    [Show full text]
  • 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations
    Prepublication Release Neonatal Life Support 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Myra H. Wyckoff, MD, Chair; Gary M. Weiner, MD; On behalf of the Neonatal Life Support Collaborators DOI: 10.1542/peds.2020-038505C Journal: Pediatrics Article Type: Supplement Article Citation: Wyckoff MH, Weiner GM, et al. Neonatal Life Support 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Pediatrics. 2020; doi: 10.1542/peds.2020-038505C This article has been copublished in Circulation. This is a prepublication version of an article that has undergone peer review and been accepted for publication but is not the final version of record. This paper may be cited using the DOI and date of access. This paper may contain information that has errors in facts, figures, and statements, and will be corrected in the final published version. The journal is providing an early version of this article to expedite access to this information. The American Academy of Pediatrics, the editors, and authors are not responsible for inaccurate information and data described in this version. ©2020 AmericanDownloaded Academy from www.aappublications.org/news of Pediatrics and American by guest on September Heart Association, 26, 2021 Inc. Neonatal Life Support 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Myra H. Wyckoff, MD, Chair; Gary M. Weiner, MD; On behalf of the Neonatal Life Support Collaborators ABSTRACT: This 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations (CoSTR) for neonatal life support includes The full author list is available on page S214.
    [Show full text]