Spectral and Energy Efficiency in 5G Wireless Networks
Total Page:16
File Type:pdf, Size:1020Kb
Spectral and Energy Efficiency in 5G Wireless Networks Iyad Lahsen-Cherif To cite this version: Iyad Lahsen-Cherif. Spectral and Energy Efficiency in 5G Wireless Networks. Networking and Internet Architecture [cs.NI]. Université Paris-Saclay, 2016. English. NNT : 2016SACLS506. tel-01476080 HAL Id: tel-01476080 https://tel.archives-ouvertes.fr/tel-01476080 Submitted on 24 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS506 Thèse de doctorat de l’Université Paris-Saclay préparée à l’Université Paris-Sud Ecole doctorale n◦580 Sciences et Technologies de l’Information et de la Communication Spécialité : Réseaux, Information et Communications par M. LAHSEN-CHERIF Iyad Spectral and Energy Efficiency in 5G Wireless Networks Efficacité Spectrale et Energétique dans les réseaux 5G Thèse présentée et soutenue à CentraleSupélec, Gif-sur-Yvette, le 02 décembre 2016. Composition du Jury : M. André-Luc Beylot Professeur à l’ENSEEIHT, Toulouse Rapporteur M. Anthony Busson Professeur à l’Université de Lyon Examinateur M. Bernard Cousin Professeur à l’Université de Rennes 1 Examinateur M. Steven Martin Professeur à l’Université Paris 11 Président Mme Lynda Mokdad Professeur à l’Université Paris 12 Rapporteur Mme Véronique Vèque Professeur à l’Université Paris 11 Directrice de thèse Mme Lynda Zitoune Maître de Conférence à l’ESIEE, Paris Co-Encadrante 1 1 Contents 0.1 Résumé . 12 1 General Introduction 14 IWirelessNetworkInterferenceManagementandPerformanceEval- uation using Stochastic Geometry 18 2 Introduction 20 2.1 ChapterSummary ..................................... 20 2.2 Mobile Data Tsunami . 21 2.3 CellularNetoworksPlanning . 21 2.4 Wireless Networks Evolution . 22 2.5 Heterogeneous Networks . 24 2.6 InterferenceProblem ................................... 25 2.7 Frequency Reuse . 27 2.7.1 ConventionalFrequencyReuse . 27 2.7.2 Hard Fractional Frequency reuse (Hard FFR) . 27 2.7.3 Soft Frequency reuse (SFR) . 27 2.8 CoordinatedMulti-Point(CoMP). 28 2.9 Conclusion ......................................... 28 3 Interference Characterization and Management Techniques 30 3.1 ChapterSummary ..................................... 31 3.2 Introduction......................................... 31 3.3 Stochastic Geometry . 31 3.4 Performance Metrics . 32 3.4.1 Coverageprobability................................ 32 3.4.2 Throughput..................................... 33 2 3.4.3 k-coverage probability . 33 3.5 Stochastic Geometry Models . 34 3.5.1 Poisson Point Process (PPP) . 34 3.5.1.1 Model . 34 3.5.1.2 Related work based on PPP . 34 3.5.2 MatérnHardCoreProcess(MHCPP) . 36 3.5.2.1 Type I . 36 3.5.2.2 Type II . 36 3.5.3 Ginibre Point Process (GPP) . 37 3.6 r-l Square Point Process . 38 3.7 Useful results of point processes . 39 3.8 Taxonomy . 40 3.9 Inter Cell Interference Coordination (ICIC)/ enhanced ICIC (eICIC) . 40 3.10 Coordination MultiPoint (CoMP) Models . 42 3.10.1 JointTransmission(CoMP-JT) . 42 3.10.2 Coordinated Beamforming/Scheduling (CoMP-CB/CS) . 43 3.11Conclusion ......................................... 44 4Ther-l square point process: The effect of coordinated multipoint joint trans- mission 46 4.1 ChapterSummary ..................................... 46 4.2 Introduction......................................... 47 4.3 Coordinated-MultiPoint Joint Transmission model . 49 4.4 Simulation and results . 52 4.5 Conclusion ......................................... 55 5 Performance Evaluation of Joint Transmission Coordinated-MultiPoint in Dense Very High Throughput WLANs Scenario 56 5.1 ChapterSummary ..................................... 56 5.2 Introduction......................................... 57 5.3 JointTransmissionCoordinationModel . 58 5.4 Performance evaluation: simulation and results . 62 5.5 Conclusion ......................................... 65 6 Impact of Resource Blocks Allocation strategies on Downlink Interference dis- tribution in LTE Networks 66 6.1 ChapterSummary ..................................... 67 6.2 Introduction......................................... 67 3 6.3 System Model . 68 6.3.1 Reuse Factor (∆).................................. 69 6.3.2 Number of RBs used at an eNodeB: the M/M/C/C queue . 69 6.4 Assignment strategies . 70 6.4.1 Cyclicassignment ................................. 70 6.4.1.1 Independent allocation (Benchmark allocation) . 70 6.4.1.2 Static allocation . 71 6.4.1.3 M/M/RBmax/RBmax allocation . 71 6.4.2 Minimizing global interference . 71 6.5 Interferencecharacterization. 73 6.5.1 Mean of interference . 73 6.5.2 VarianceofInterference . 76 6.6 Numerical results . 80 6.6.1 Mean and Variance of interference . 81 6.6.2 Approximation of distribution of interference . 82 6.6.3 Network densification . 82 6.6.4 Minimizing global interference . 82 6.6.5 Comparing different allocation strategies . 84 6.6.6 Impact of ∆ ..................................... 84 6.7 Conclusion ......................................... 84 II Wireless Mesh Network: Directional Antennas approach 88 7 Scenario and Motivations 90 7.1 ChapterSummary ..................................... 90 7.2 Backhaul . 90 7.2.1 Mesh Networks Overview . 91 7.2.2 Wireless Backhaul . 92 7.3 EnergyConsumption.................................... 93 7.4 Motivations . 93 7.5 Scenario and Problem Statement . 94 8 Directional Antennas & Mesh Networks: state of the art 96 8.1 ChapterSummary ..................................... 97 8.2 Directional Antennas (DAs) Generalities . 97 8.2.1 Directional Antennas Gain . 97 8.2.2 SwitchedandSteerablebeamsDAs. 98 4 8.2.3 Problems facing DAs networks . 99 8.2.3.1 Deafness . 99 8.2.3.2 Hidden Terminal . 99 8.3 PHY layer Optimization . 101 8.3.1 General Optimization Model . 101 8.3.2 OAs Networks Optimization . 102 8.3.3 DAs Networks Optimization . 104 8.3.4 Beyond optimization . 106 8.4 MediumAccessControl(MAC). 107 8.4.1 Throughput .................................... 107 8.4.2 Energy consumption . 109 8.5 Routing . 110 8.5.1 EnergyConsumption................................ 111 8.6 Conclusion ......................................... 112 9 Energy Efficiency Evaluation in Directional Antennas Mesh Networks 114 9.1 ChapterSummary ..................................... 114 9.2 Introduction......................................... 115 9.3 Scenarios & Performance Metrics . 116 9.3.1 Simulation Scenarios . 116 9.3.2 Performance Metrics . 117 9.3.3 Number of Links (NL) . 119 9.3.3.1 Chaintopology.............................. 119 9.3.3.2 Grid topology . 119 9.3.3.3 Example . 124 9.3.3.4 Distance between nodes . 124 9.4 Numerical Results . 125 9.4.1 Mesh topology . 125 9.4.2 Performance discussion . 125 9.4.2.1 Mean Collision and Loss Ratios . 126 9.4.2.2 Impactofthesendingrate . 127 9.4.2.3 Impactofnumberofnodes . 128 9.4.2.4 Energy Efficiency . 129 9.4.2.5 ImpactofGatewayplacement . 130 9.5 Conclusion ......................................... 130 5 10 Joint Optimization of Energy Consumption and Throughput of Directional WMNs136 10.1ChapterSummary ..................................... 137 10.2Introduction......................................... 137 10.3 System Model . 138 10.3.1 InterferenceModel ................................. 138 10.3.2 Energy Model . 138 10.3.3 PowerControlscheme . 138 10.4 Problem formulation . 139 10.4.1 Variables and Parameters . 139 10.4.2 Objective function . 140 10.4.3 Constraints ..................................... 141 10.4.4 Variables/Constraints Linearisation . 143 10.5 Performance Evaluation . 145 10.5.1 Evaluation methodology . 145 10.5.2 Simulation Parameters . ..