Rote Liste Algen 2020

Total Page:16

File Type:pdf, Size:1020Kb

Rote Liste Algen 2020 Rote Listen Sachsen-Anhalt Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt 2 Algen* Halle, Heft 1/2020: 55–75 Bearbeitet von Lothar TÄUSCHER dophyceae = Chloromonadophyceae) und Dinophyta (2. Fassung Algen excl. Armleuchteralgen, (Panzergeißler: Dinophyceae). Stand: August 2019) Einige Arten der Chlorophyceae, Ulvophyceae, (3. Fassung Armleuchteralgen, Stand: August 2019) Zygnematales, Charales und Vaucheriaceae (Grün-, Sternchen-, Armleuchter- und Schlauchalgen) gehören Einleitung zu den Makrophyten in den Binnengewässern. Dabei bilden einige büschel- und/oder wattenbildende fädige Der Begriff „Algen“ (Organisationstyp „Phycophyta“) Grünlagen (Cladophora-, Draparnaldia-, Oedogonium-, ist eine künstliche Sammelbezeichnung für unter- Stigeoclonium-, Ulothrix-, Ulva-[= Enteromorpha-] Ar- schiedliche primär photoautotrophe (Chlorophyll-a ten) und fädige Sternchen-Algen (Mougeotia-, Spirogy- besitzende) Organismen mit verschiedenen Ent- ra- und Zygnema-Arten) beim Austrocknen von tem- wicklungslinien, bei deren Photosynthese mit Hilfe porären Kleingewässern und an Gewässerrändern das der Sonnenlichtenergie aus anorganischen Stoffen sogenannte „Meteorpapier“, während Armleuchter- einfache organische Substanzen und Sauerstoff und Schlauchalgen für eine Besiedlung der Grundrasen produziert werden. Charakteristisch für diese zu den als untere Verbreitungsgrenze der Makrophyten-Be- Kryptogamen gehörenden „niederen Pflanzen“ ist ein siedlung charakteristisch sind (s. TÄUSCHER 2016, 2018a). Thallus (Einzelzellen, Kolonien, Trichome/Fäden oder Der Großteil der anderen Algenklassen und -ordnun- primitive Vegetationskörper) ohne echte Wurzeln, gen in den Binnengewässern sind Mikroalgen, die klei- Stängel und Blätter (s. TÄUSCHER 2011, 2016). ner als 1 mm sind und/oder nur mit Hilfe des Lichtmi- Nach den aktuellen Bearbeitungen der „Algen“ kroskopes bestimmbar sind. Bei den Mikroalgen wird nach ARBEITSGRUppE CHARACEEN DEUTSCHLANDS (2016), BÜDEL nach der Lebensform zwischen Phytoplankton und Mi- et al. (2000–2018), ETTL et al. (1978–1999), FREY (2012, krophytobenthos (Syn.: Aufwuchs, Bewuchs, Periphy- 2015, 2017), GUTOWSKI (2018), KRIENITZ (2009, 2018), ton) unterschieden (s. TÄUSCHER 2018b). Zwischen den KULL (2018) und TÄUSCHER (2011, 2016) gehören dazu Makrophyten lebende Mikroalgen werden als Meta- folgende im Süßwasser vorkommende Abteilungen, phyton (Pleucon, Pseudoperiphyton) bezeichnet. Einige Klassen und Ordnungen. Prokaryotische „Algen“ sind benthische Mikroalgen können als Tychoplankter im die Cyanobacteria (Cyanobakterien = Blaualgen). Die Freiwasser auftreten. Nur Massenentwicklungen sind eukaryotischen „Algen“ („Phycophyta“) umfassen als Beläge und Häute („Frosch- oder Krötenhäute“), die Rhodophyta (Rotalgen), Chlorophyta (Grünalgen: Watten, Krusten und Schleimen bzw. Gallertkugeln auf Chlorophyceae; Trebouxiophyceae; Ulvophyceae; Prasi- verschiedenen Substraten und als Wasserblüten (flos nophyceae), Charophyta = Streptophyta p. p. (Strepto- aquae) oder Vegetationsfärbungen im Freiwasser ma- phyt-Algen: Conjugatophyceae = Zygnematophyceae: kroskopisch erkennbar. Die Algen sind in den meisten Zygnematales, Desmidiales; Klebsormidiophyceae; Co- Gewässern die Hauptprimärproduzenten. leochaetophyceae; Charophyceae: Charales), Eugleno- phyta (Schönaugengeißler: Euglenophyceae), Crypto- Grundlegende Bearbeitungen von Gesamtartenlisten phyta (Schlundgeißler: Cryptophyceae), Haptophyta = (Checklisten) und Roten Listen limnischer Arten liegen Prymnesiophyta (Kalkalgen: Haptophyceae = Prymne- in Deutschland für 6 Algengruppen vor. Dies sind siophyceae), Ochrophyta = Heterokontophyta (Gelbal- die Süßwasser-Rotalgen (Rhodophyta) mit 29 Arten gen: Bacillariophyceae sensu lato = Bacillariophyta: Co- (FOERSTER et al. 2018, KNAppE & HUTH 2014), die Süßwas- scinodiscophyceae, Mediophyceae, Bacillariophyceae ser-Braunalgen (Phaeophyceae = Fucophyceae) mit 4 sensu stricto, Fragilariophyceae; Chrysophyceae sensu Arten (FOERSTER et al. 2018), die Süßwasser-Kieselalgen lato = Chrysophyceae sensu stricto, et Synurophyceae; (Bacillariophyceae sensu lato = Bacillariophyta) mit Dictyochophyceae; Eustigmatophyceae; Phaeophyceae 2103 Arten (HOfmANN et al. 2018), die zu den Gelbgrün- = Fucophyceae; Xanthophyceae = Tribophyceae; Raphi- algen (Tribophyceae = Xanthophyceae) gehörenden * Diese Arbeit widme ich dem Phykologen und Limnologen PD Dr. habil. Lothar KRIENITZ, langjähriger Mitherausgeber der „Süß- wasserflora von Mitteleuropa – Fresh Water Flora of Central Europe“, anlässlich seines 70. Geburtstages. Er hat sowohl einen sehr großen Beitrag zur Kenntnis der Mikroalgen-Besiedlung in Sachsen-Anhalt als auch zur klassischen und modernen Klas- sifizierung der Algen geleistet (vgl.T ÄUSCHER 2014). Außerdem widme ich die Rote Liste der Algen in memoriam Dr. Hermann HEYNIG (1924–2018) und Prof. Dr. habil. Helmut PANKOW (1929–1996) anlässlich ihrer 95. bzw. 90. Geburtstage im Jahr 2019, die mich in meinen Arbeiten als Phykologe sehr geprägt haben. Hermann HEYNIG, Mitherausgeber der „Süßwasserflora von Mitteleuropa“ von 1976 bis 1999, war ein wissenreicher und hilfreicher Fachkollege. Seine grundlegenden Arbeiten sind für die Kenntnis der planktischen Mikroalgen-Besiedlung in Sachsen-Anhalt sehr wichtig (s. TÄUSCHER 2019a, b). Helmut PANKOW war mein akademischer Lehrer, der mich zum Studium der Algen anregte und zusammen mit seinem langjährigen Mitarbei- ter Dr. Volkbert KELL (1937–2014) mich in die Untersuchungen dieser interessanten Organismen einführte (s. TÄUSCHER 2015). 55 Algen Schlauchalgen (Vaucheriaceae) mit 45 Arten (LINNE VON Cyanobacteria; „Phycophyta“) und von SCHORIES et al. BERG 2018), die Zieralgen (Desmidiales) mit 968 Arten (2009: Makrophytobenthos – Rhodopyta; Chlorophy- (KUSBER & GUTOWSKI 2018) und die Armleuchteralgen ta; Charophyta = Streptophyta p. p.; Xanthophyceae (Charales) mit 36 Arten (KORSCH 2018, KORSCH et al. 2008, = Tribophyceae; Phaeophyceae = Fucophyceae; 2013: 2013, ARBEITSGRUppE CHARACEEN DEUTSCHLANDS 2016). Makrophytobenthos – Rhodopyta; Chlorophyta; Außerdem sind die Algenvorkommen in Deutsch- Phaeophyceae = Fucophyceae). land in der Liste von MAUCH et al. (2003: Cyanobacteria; In den Checklisten der Algen für das Land Sach- „Phycophyta“), in der „Harmonisierte Taxaliste des sen-Anhalt sind insgesamt 1.544 Arten aufgelistet Phytoplanktons“ in MISCHKE & NIXDORF (2008: plankti- (KORSCH 2013, 2016: 19 Armleuchteralgen – Charace- sche und tychoplanktische Cyanobacteria; „Phycophy- ae, TÄUSCHER 2016: 1.514 Cyanobacteria et „Phycophy- ta“), die in den Jahren 2017 und 2018 grundlegend ta“, KUSBER 2017: 11 Phytoflagellaten). überarbeitet wurde (s. KASTEN et al. 2018, MISCHKE et al. Die Mikro- und Makroalgen-Arten und -Gesell- 2018a, b) und in der Bestimmungshilfe „Benthische schaften können mit ihren aut- und synökologischen Algen ohne Diatomeen und Characeen“ von GUTOWSKI Besonderheiten umfangreich als Indikatoren der & FOERSTER (2009: Cyanobacteria; Rhodophyta; Chloro- Gewässerqualität genutzt werden (s. GUTOWSKI 2018, phyta; Charophyta = Streptophyta p. p.; Euglenophyta; HOfmANN et al. 2018, TÄUSCHER 2018a). Sie sind gute Xanthophyceae = Tribophyceae; Phaeophyceae = Fu- Indikatoren für den Gehalt an anorganischen Nähr- cophyceae) umfangreich aufgelistet. Auch in Gesamt- stoffen (Trophie), für die organische Belastung (Sap- artenlisten und Roten Listen für die Bundesländer robie), für den Salzgehalt (Salinität), für den pH-Wert Baden-Württemberg (STUTZ & MATTERN 2018/2019: (acido- bis alkaliphile Arten), für die Erwärmung von Gesamtartenliste – Cyanobacteria; „Phycophyta“), Gewässern (thermophile unbeständige und einge- Bayern (FRANKE et al. 2004: Charales), Berlin (GEISSLER in bürgerte neophytische Cyanobakterien – Cyanobac- GEISSLER & KIES 2003: Gesamtartenliste – Cyanobacte- teria – : z. B. Anabaenopsis elenkinii, Chrysosporum ria; „Phycophyta“, FROmm 2014: Desmidiales, WAGNER bergii, Cylindrospermopsis raciborskii, Sphaerosper- 2014: Rhodophyta, KUSBER et al. 2017: Charales, RUDOLPH mopsis aphanizomenoides; Rotalgen – Rhodophyta et al. 2017: Rhodophyta; Phaeophyceae = Fucophyce- -: Compsopogon-Arten; Grünalgen – Ulvophyceae -: ae), Brandenburg (KABUS et al. 2011: Charales, TÄUSCHER Pithophora roettleri; s. TÄUSCHER 2012c, 2016, 2018a, 2009a, 2010, 2011, 2012a, 2013, 2019c, in Vorberei- b, TÄUSCHER & KUBSCH 2017), für toxische / allergische tung: Gesamtartenlisten – Cyanobacteria; „Phyco- Wirkungen (Hygiene: Leber- und Nervengifte, Haut- phyta“, WAGNER 2014: Rhodophyta), Hamburg (KIES in reizungen) und für den Gehalt an Schwefel und Eisen GEISSLER & KIES 2003: Gesamtartenliste – Cyanobacteria; (thiophile und siderophile Arten). Für die ökologische „Phycophyta“), Hessen (GREGOR & KORTE 2010: Charales), Einstufung der Gewässer nach der Europäischen Was- Mecklenburg-Vorpommern (TÄUSCHER 2007: Auflistung serrahmenrichtlinie (WRRL 2000) spielen die plankti- von Cyanobacteria- und „Phycophyta“-Artenlisten, TEpp- schen (Phytoplankton) und benthischen Mikroalgen KE et al. 2015: Charales), Niedersachsen und Bremen (Kieselalgen; Mikrophytobenthos ohne Diatomeen) (VAHLE 1990: Charales), Nordrhein-Westfalen (FRIEDRICH und die Makroalgen (makroskopische Grün-, Stern- et al. 2010: Rhodophyta; Phaeophyceae = Fucophyce- chen-, Armleuchter- und Schlauchalgen) eine große ae, VAN DE WEYER 2010: Charales), Rheinland-Pfalz (WOLff Rolle, während unter naturschutzfachlichem Aspekt & VAN DE WEYER 2010, 2016: Charales), Saarland (WOLff der Fauna-Flora-Habitat-Richtlinie (FFH-RL 1992, 2008a, b: Rhodophyta; Charales), Sachsen (BERNHARD
Recommended publications
  • Induction of Conjugation and Zygospore Cell Wall Characteristics
    plants Article Induction of Conjugation and Zygospore Cell Wall Characteristics in the Alpine Spirogyra mirabilis (Zygnematophyceae, Charophyta): Advantage under Climate Change Scenarios? Charlotte Permann 1 , Klaus Herburger 2 , Martin Felhofer 3 , Notburga Gierlinger 3 , Louise A. Lewis 4 and Andreas Holzinger 1,* 1 Department of Botany, Functional Plant Biology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 2 Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; [email protected] 3 Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; [email protected] (M.F.); [email protected] (N.G.) 4 Department of Ecology and Evolutionary Biology, University of Conneticut, Storrs, CT 06269-3043, USA; [email protected] * Correspondence: [email protected] Abstract: Extreme environments, such as alpine habitats at high elevation, are increasingly exposed to man-made climate change. Zygnematophyceae thriving in these regions possess a special means Citation: Permann, C.; Herburger, K.; of sexual reproduction, termed conjugation, leading to the formation of resistant zygospores. A field Felhofer, M.; Gierlinger, N.; Lewis, sample of Spirogyra with numerous conjugating stages was isolated and characterized by molec- L.A.; Holzinger, A. Induction of ular phylogeny. We successfully induced sexual reproduction under laboratory conditions by a Conjugation and Zygospore Cell Wall transfer to artificial pond water and increasing the light intensity to 184 µmol photons m−2 s−1. Characteristics in the Alpine Spirogyra This, however was only possible in early spring, suggesting that the isolated cultures had an inter- mirabilis (Zygnematophyceae, nal rhythm.
    [Show full text]
  • The Chloroplast Rpl23 Gene Cluster of Spirogyra Maxima (Charophyceae) Shares Many Similarities with the Angiosperm Rpl23 Operon
    Algae Volume 17(1): 59-68, 2002 The Chloroplast rpl23 Gene Cluster of Spirogyra maxima (Charophyceae) Shares Many Similarities with the Angiosperm rpl23 Operon Jungho Lee* and James R. Manhart Department of Biology, Texas A&M University, College Station, TX, 77843-3258, U.S.A. A phylogenetic affinity between charophytes and embryophytes (land plants) has been explained by a few chloro- plast genomic characters including gene and intron (Manhart and Palmer 1990; Baldauf et al. 1990; Lew and Manhart 1993). Here we show that a charophyte, Spirogyra maxima, has the largest operon of angiosperm chloroplast genomes, rpl23 operon (trnI-rpl23-rpl2-rps19-rpl22-rps3-rpl16-rpl14-rps8-infA-rpl36-rps11-rpoA) containing both embryophyte introns, rpl16.i and rpl2.i. The rpl23 gene cluster of Spirogyra contains a distinct eubacterial promoter sequence upstream of rpl23, which is the first gene of the green algal rpl23 gene cluster. This sequence is completely absent in angiosperms but is present in non-flowering plants. The results imply that, in the rpl23 gene cluster, early charophytes had at least two promoters, one upstream of trnI and another upstream of rpl23, which partially or completely lost its function in land plants. A comparison of gene clusters of prokaryotes, algal chloroplast DNAs and land plant cpDNAs indicated a loss of numerous genes in chlorophyll a+b eukaryotes. A phylogenetic analysis using presence/absence of genes and introns as characters produced trees with a strongly supported clade contain- ing chlorophyll a+b eukaryotes. Spirogyra and embryophytes formed a clade characterized by the loss of rpl5 and rps9 and the gain of trnI (CAU) and introns in rpl2 and rpl16.
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Biology and Systematics of Heterokont and Haptophyte Algae1
    American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed.
    [Show full text]
  • Centers of Endemism of Freshwater Protists Deviate from Pattern of Taxon Richness on a Continental Scale Jana L
    www.nature.com/scientificreports OPEN Centers of endemism of freshwater protists deviate from pattern of taxon richness on a continental scale Jana L. Olefeld1, Christina Bock1, Manfred Jensen1, Janina C. Vogt2, Guido Sieber1, Dirk Albach2 & Jens Boenigk1* Here, we analyzed patterns of taxon richness and endemism of freshwater protists in Europe. Even though the signifcance of physicochemical parameters but also of geographic constraints for protist distribution is documented, it remains unclear where regional areas of high protist diversity are located and whether areas of high taxon richness harbor a high proportion of endemics. Further, patterns may be universal for protists or deviate between taxonomic groups. Based on amplicon sequencing campaigns targeting the SSU and ITS region of the rDNA we address these patterns at two diferent levels of phylogenetic resolution. Our analyses demonstrate that protists have restricted geographical distribution areas. For many taxonomic groups the regions of high taxon richness deviate from those having a high proportion of putative endemics. In particular, the diversity of high mountain lakes as azonal habitats deviated from surrounding lowlands, i.e. many taxa were found exclusively in high mountain lakes and several putatively endemic taxa occurred in mountain regions like the Alps, the Pyrenees or the Massif Central. Beyond that, taxonomic groups showed a pronounced accumulation of putative endemics in distinct regions, e.g. Dinophyceae along the Baltic Sea coastline, and Chrysophyceae in Scandinavia. Many other groups did not have pronounced areas of increased endemism but geographically restricted taxa were found across Europe. Restricted distribution and endemism has been demonstrated for numerous protist taxa by now 1–4.
    [Show full text]
  • Mannitol Biosynthesis in Algae : More Widespread and Diverse Than Previously Thought
    This is a repository copy of Mannitol biosynthesis in algae : more widespread and diverse than previously thought. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/113250/ Version: Accepted Version Article: Tonon, Thierry orcid.org/0000-0002-1454-6018, McQueen Mason, Simon John orcid.org/0000-0002-6781-4768 and Li, Yi (2017) Mannitol biosynthesis in algae : more widespread and diverse than previously thought. New Phytologist. pp. 1573-1579. ISSN 1469-8137 https://doi.org/10.1111/nph.14358 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Mannitol biosynthesis in algae: more widespread and diverse than previously thought. Thierry Tonon1,*, Yi Li1 and Simon McQueen-Mason1 1 Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York, YO10 5DD, UK. * Author for correspondence: tel +44 1904328785; email [email protected] Key words: Algae, primary metabolism, mannitol biosynthesis, mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, haloacid dehalogenase, histidine phosphatase, evolution of metabolic pathways.
    [Show full text]
  • Curitiba, Southern Brazil
    data Data Descriptor Herbarium of the Pontifical Catholic University of Paraná (HUCP), Curitiba, Southern Brazil Rodrigo A. Kersten 1,*, João A. M. Salesbram 2 and Luiz A. Acra 3 1 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil 2 REFLORA Project, Curitiba, Brazil; [email protected] 3 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-3721-2392 Academic Editor: Martin M. Gossner Received: 22 November 2016; Accepted: 5 February 2017; Published: 10 February 2017 Abstract: The main objective of this paper is to present the herbarium of the Pontifical Catholic University of Parana’s and its collection. The history of the HUCP had its beginning in the middle of the 1970s with the foundation of the Biology Museum that gathered both botanical and zoological specimens. In April 1979 collections were separated and the HUCP was founded with preserved specimens of algae (green, red, and brown), fungi, and embryophytes. As of October 2016, the collection encompasses nearly 25,000 specimens from 4934 species, 1609 genera, and 297 families. Most of the specimens comes from the state of Paraná but there were also specimens from many Brazilian states and other countries, mainly from South America (Chile, Argentina, Uruguay, Paraguay, and Colombia) but also from other parts of the world (Cuba, USA, Spain, Germany, China, and Australia). Our collection includes 42 fungi, 258 gymnosperms, 299 bryophytes, 2809 pteridophytes, 3158 algae, 17,832 angiosperms, and only one type of Mimosa (Mimosa tucumensis Barneby ex Ribas, M.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected].
    [Show full text]
  • Plant of the Week Liverworts
    Plant of the Week LLiivveerrwwoorrttss It is hard to believe that a group of plants that includes so many beautiful species, has been saddled with such an awful name. The name liverwort comes from the Anglo- Saxon word “lifer” (liver) and “wyrt” (a plant), the inference being that plants that look like organs of the human body might 1 Telaranea centipes – a leafy provide medicinal benefits for that organ . liverwort Photo: Ron Oldfield Liverworts are close relatives of mosses. Traditionally, they were considered to be one class (Hepaticae) of the division Bryophyta of the Plant Kingdom. The other two classes were the mosses (musci) and the hornworts (Anthocerotae). Using modern molecular techniques, botanists have now elevated each of these classes to divisions of the plant kingdom, so now only mosses belong to the Division Bryophyta. Liverworts are placed in the Division Marchantiophyta and hornworts in the Division Anthocerophyta. All three divisions are now collectively referred to as “Embryophytes”, that is, land plants that do not have a vascular system. Embryophytes are believed to have evolved from a family of freshwater algae, the Charophyceae. In 1994, it was proposed that the three lineages of bryophytes, formed a gradient leading to the vascular plants. The most recent hypothesis is that hornworts share a common ancestor with vascular plants and liverworts are a sister lineage to all other extant embryophytes. Mosses bridge the gap between liverworts 2 and hornworts . Liverworts Mosses Hornworts Tracheophyte s Charophyceae Lunularia cruciata – a thallose liverwort Photo: Ron Oldfield There are two readily identifiable groups of liverworts: thallose liverworts appear to be relatively simple structures, and form flattened green plates that are not differentiated into stems and leaves.
    [Show full text]
  • Phylogeny and Morphology of a Chattonella (Raphidophyceae) Species from the Mediterranean Sea: What Is C
    This article was downloaded by: [Stiftung Alfred Wegener Institute für Polar- und Meeresforschung ] On: 17 April 2013, At: 02:13 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK European Journal of Phycology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tejp20 Phylogeny and morphology of a Chattonella (Raphidophyceae) species from the Mediterranean Sea: what is C. subsalsa? Sascha Klöpper a , Uwe John a , Adriana Zingone b , Olga Mangoni c , Wiebe H.C.F. Kooistra b & Allan D. Cembella a a Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany b Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy c Department of Biological Sciences, University Federico II, Via Mezzocannone 8, 80138, Naples, Italy Version of record first published: 13 Mar 2013. To cite this article: Sascha Klöpper , Uwe John , Adriana Zingone , Olga Mangoni , Wiebe H.C.F. Kooistra & Allan D. Cembella (2013): Phylogeny and morphology of a Chattonella (Raphidophyceae) species from the Mediterranean Sea: what is C. subsalsa?, European Journal of Phycology, 48:1, 79-92 To link to this article: http://dx.doi.org/10.1080/09670262.2013.771412 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.
    [Show full text]