Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Immunoglobulin G Is a Platelet Alpha Granule-Secreted Protein
Immunoglobulin G is a platelet alpha granule-secreted protein. J N George, … , L K Knieriem, D F Bainton J Clin Invest. 1985;76(5):2020-2025. https://doi.org/10.1172/JCI112203. Research Article It has been known for 27 yr that blood platelets contain IgG, yet its subcellular location and significance have never been clearly determined. In these studies, the location of IgG within human platelets was investigated by immunocytochemical techniques and by the response of platelet IgG to agents that cause platelet secretion. Using frozen thin-sections of platelets and an immunogold probe, IgG was located within the alpha-granules. Thrombin stimulation caused parallel secretion of platelet IgG and two known alpha-granule proteins, platelet factor 4 and beta-thromboglobulin, beginning at 0.02 U/ml and reaching 100% at 0.5 U/ml. Thrombin-induced secretion of all three proteins was inhibited by prostaglandin E1 and dibutyryl-cyclic AMP. Calcium ionophore A23187 also caused parallel secretion of all three proteins, whereas ADP caused virtually no secretion of any of the three. From these data and a review of the literature, we hypothesize that plasma IgG is taken up by megakaryocytes and delivered to the alpha-granules, where it is stored for later secretion by mature platelets. Find the latest version: https://jci.me/112203/pdf Rapid Publication Immunoglobulin G Is a Platelet Alpha Granule-secreted Protein James N. George, Sherry Saucerman, Shirley P. Levine, and Linda K. Knieriem Division ofHematology, Department ofMedicine, University of Texas Health Science Center, and Audie L. Murphy Veterans Hospital, San Antonio, Texas 78284 Dorothy F. -
Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis
Journal of Allergy Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Guest Editors: Ralph Mösges, Carlos E. Baena-Cagnani, and Desiderio Passali Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Journal of Allergy Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Guest Editors: Ralph Mosges,¨ Carlos E. Baena-Cagnani, and Desiderio Passali Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Journal of Allergy.” All articles are open access articles distributed under the Creative Commons At- tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board William E. Berger, USA Alan P. Knutsen, USA Fabienne Ranc, France Kurt Blaser, Switzerland Marek L. Kowalski, Poland Anuradha Ray, USA Eugene R. Bleecker, USA Ting Fan Leung, Hong Kong Harald Renz, Germany JandeMonchy,TheNetherlands Clare M Lloyd, UK Nima Rezaei, Iran Frank Hoebers, The Netherlands Redwan Moqbel, Canada Robert P. Schleimer, USA StephenT.Holgate,UK Desiderio Passali, Italy Massimo Triggiani, Italy Sebastian L. Johnston, UK Stephen P. Peters, USA Hugo Van Bever, Singapore Young J. Juhn, USA David G. Proud, Canada Garry Walsh, United Kingdom Contents Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis,RalphMosges,¨ Carlos E. Baena-Cagnani, and Desiderio Passali Volume 2014, Article ID 416236, 2 pages Clinical Efficacy of a Spray Containing Hyaluronic Acid and Dexpanthenol after Surgery in the Nasal Cavity (Septoplasty, Simple Ethmoid Sinus Surgery, and Turbinate Surgery), Ina Gouteva, Kija Shah-Hosseini, and Peter Meiser Volume 2014, Article ID 635490, 10 pages The Effectiveness of Acupuncture Compared to Loratadine in Patients Allergic to House Dust ,Mites Bettina Hauswald, Christina Dill, Jurgen¨ Boxberger, Eberhard Kuhlisch, Thomas Zahnert, and Yury M. -
(CD-P-PH/PHO) Report Classification/Justifica
COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of medicines belonging to the ATC group R01 (Nasal preparations) Table of Contents Page INTRODUCTION 5 DISCLAIMER 7 GLOSSARY OF TERMS USED IN THIS DOCUMENT 8 ACTIVE SUBSTANCES Cyclopentamine (ATC: R01AA02) 10 Ephedrine (ATC: R01AA03) 11 Phenylephrine (ATC: R01AA04) 14 Oxymetazoline (ATC: R01AA05) 16 Tetryzoline (ATC: R01AA06) 19 Xylometazoline (ATC: R01AA07) 20 Naphazoline (ATC: R01AA08) 23 Tramazoline (ATC: R01AA09) 26 Metizoline (ATC: R01AA10) 29 Tuaminoheptane (ATC: R01AA11) 30 Fenoxazoline (ATC: R01AA12) 31 Tymazoline (ATC: R01AA13) 32 Epinephrine (ATC: R01AA14) 33 Indanazoline (ATC: R01AA15) 34 Phenylephrine (ATC: R01AB01) 35 Naphazoline (ATC: R01AB02) 37 Tetryzoline (ATC: R01AB03) 39 Ephedrine (ATC: R01AB05) 40 Xylometazoline (ATC: R01AB06) 41 Oxymetazoline (ATC: R01AB07) 45 Tuaminoheptane (ATC: R01AB08) 46 Cromoglicic Acid (ATC: R01AC01) 49 2 Levocabastine (ATC: R01AC02) 51 Azelastine (ATC: R01AC03) 53 Antazoline (ATC: R01AC04) 56 Spaglumic Acid (ATC: R01AC05) 57 Thonzylamine (ATC: R01AC06) 58 Nedocromil (ATC: R01AC07) 59 Olopatadine (ATC: R01AC08) 60 Cromoglicic Acid, Combinations (ATC: R01AC51) 61 Beclometasone (ATC: R01AD01) 62 Prednisolone (ATC: R01AD02) 66 Dexamethasone (ATC: R01AD03) 67 Flunisolide (ATC: R01AD04) 68 Budesonide (ATC: R01AD05) 69 Betamethasone (ATC: R01AD06) 72 Tixocortol (ATC: R01AD07) 73 Fluticasone (ATC: R01AD08) 74 Mometasone (ATC: R01AD09) 78 Triamcinolone (ATC: R01AD11) 82 -
The Principles and Applications of Avidin-Based Nanoparticles in Drug Delivery and Diagnosis
Journal of Controlled Release 245 (2017) 27–40 Contents lists available at ScienceDirect Journal of Controlled Release journal homepage: www.elsevier.com/locate/jconrel Review article The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis Akshay Jain, Kun Cheng ⁎ Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri Kansas City, Kansas City, MO 64108, United States article info abstract Article history: Avidin-biotin interaction is one of the strongest non-covalent interactions in the nature. Avidin and its analogues Received 7 October 2016 have therefore been extensively utilized as probes and affinity matrices for a wide variety of applications in bio- Accepted 7 November 2016 chemical assays, diagnosis, affinity purification, and drug delivery. Recently, there has been a growing interest in Available online 16 November 2016 exploring this non-covalent interaction in nanoscale drug delivery systems for pharmaceutical agents, including small molecules, proteins, vaccines, monoclonal antibodies, and nucleic acids. Particularly, the ease of fabrication Keywords: Nanotechnology without losing the chemical and biological properties of the coupled moieties makes the avidin-biotin system a Avidin versatile platform for nanotechnology. In addition, avidin-based nanoparticles have been investigated as Neutravidin diagnostic systems for various tumors and surface antigens. In this review, we will highlight the various Streptavidin fabrication principles and biomedical applications of avidin-based nanoparticles in drug delivery and diagnosis. Non-covalent interaction The structures and biochemical properties of avidin, biotin and their respective analogues will also be discussed. Drug delivery © 2016 Elsevier B.V. All rights reserved. Imaging Diagnosis Contents 1. Introduction............................................................... 27 2. Biochemicalinsightsofavidin,biotinandanalogues............................................ -
Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning
Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy using Machine Learning Kate Wang et al. Supplemental Table S1. Drugs selected by Pharmacophore-based, ML-based and DL- based search in the FDA-approved drugs database Pharmacophore WEKA TF 1-Palmitoyl-2-oleoyl-sn-glycero-3- 5-O-phosphono-alpha-D- (phospho-rac-(1-glycerol)) ribofuranosyl diphosphate Acarbose Amikacin Acetylcarnitine Acetarsol Arbutamine Acetylcholine Adenosine Aldehydo-N-Acetyl-D- Benserazide Acyclovir Glucosamine Bisoprolol Adefovir dipivoxil Alendronic acid Brivudine Alfentanil Alginic acid Cefamandole Alitretinoin alpha-Arbutin Cefdinir Azithromycin Amikacin Cefixime Balsalazide Amiloride Cefonicid Bethanechol Arbutin Ceforanide Bicalutamide Ascorbic acid calcium salt Cefotetan Calcium glubionate Auranofin Ceftibuten Cangrelor Azacitidine Ceftolozane Capecitabine Benserazide Cerivastatin Carbamoylcholine Besifloxacin Chlortetracycline Carisoprodol beta-L-fructofuranose Cilastatin Chlorobutanol Bictegravir Citicoline Cidofovir Bismuth subgallate Cladribine Clodronic acid Bleomycin Clarithromycin Colistimethate Bortezomib Clindamycin Cyclandelate Bromotheophylline Clofarabine Dexpanthenol Calcium threonate Cromoglicic acid Edoxudine Capecitabine Demeclocycline Elbasvir Capreomycin Diaminopropanol tetraacetic acid Erdosteine Carbidopa Diazolidinylurea Ethchlorvynol Carbocisteine Dibekacin Ethinamate Carboplatin Dinoprostone Famotidine Cefotetan Dipyridamole Fidaxomicin Chlormerodrin Doripenem Flavin adenine dinucleotide -
Hyaluronic Acid Introduced 2003
Hyaluronic Acid Introduced 2003 What Is It? Are There Any Potential Drug Interactions? Hyaluronic acid, or HA, is a naturally occurring polymer found in every tissue of At this time, there are no known adverse reactions when taken in conjunction the body. It is particularly concentrated in the skin (almost 50% of all HA in the with medications. body is found in the skin) and synovial fluid. It is composed of alternating units of n-acetyl-d-glucosamine and d-glucuronate. This polymer’s functions include Hyaluronic acid attracting and retaining water in the extracellular matrix of tissues, in layers of skin, and in synovial fluid.* each vegetarian capsule contains v 3 hyaluronic acid (low molecular weight) ..............................................................................70 mg Features Include other ingredients: hypo-allergenic plant fiber (cellulose), vegetarian capsule (cellulose, water) 1–2 capsules per day, in divided doses, with or between meals. Clinically Researched Absorption: In nature, HA is a large molecular weight compound, ranging in size from 500,000-6,000,000 daltons. This is too large to ® be absorbed in the small intestines. HyaMax sodium hyaluronate provides a Hyaluronic acid liquid low molecular weight source of hyaluronic acid produced through fermentation. ® In a pharmacokinetic study, orally administered HyaMax hyaluronic acid was 2 ml (0.06 fl oz) (2 full droppers) contains v incorporated into joints, connective tissue and skin, with a particular affinity for hyaluronic acid (low molecular weight) ..............................................................................10 mg cartilaginous joints.* other ingredients: purified water, apple juice concentrate, citric acid, natural apple flavor, potassium sorbate, purified stevia extract Uses For Hyaluronic Acid serving size: 2 ml (0.06 fl oz) Skin Health: For skin cells, the ability of HA to attract and retain water is servings per container: 29 essential for proper cell-to-cell communication, hydration, nutrient delivery, and 1-2 servings daily, with or between meals. -
ELISA Kit for Hemopexin (HPX)
SEB986Ra 96 Tests Enzyme-linked Immunosorbent Assay Kit For Hemopexin (HPX) Organism Species: Rattus norvegicus (Rat) Instruction manual FOR IN VITRO AND RESEARCH USE ONLY NOT FOR USE IN CLINICAL DIAGNOSTIC PROCEDURES 11th Edition (Revised in July, 2013) [ INTENDED USE ] The kit is a sandwich enzyme immunoassay for in vitro quantitative measurement of hemopexin in rat serum, plasma and other biological fluids. [ REAGENTS AND MATERIALS PROVIDED ] Reagents Quantity Reagents Quantity Pre-coated, ready to use 96-well strip plate 1 Plate sealer for 96 wells 4 Standard 2 Standard Diluent 1×20mL Detection Reagent A 1×120μL Assay Diluent A 1×12mL Detection Reagent B 1×120μL Assay Diluent B 1×12mL TMB Substrate 1×9mL Stop Solution 1×6mL Wash Buffer (30 × concentrate) 1×20mL Instruction manual 1 [ MATERIALS REQUIRED BUT NOT SUPPLIED ] 1. Microplate reader with 450 ± 10nm filter. 2. Precision single or multi-channel pipettes and disposable tips. 3. Eppendorf Tubes for diluting samples. 4. Deionized or distilled water. 5. Absorbent paper for blotting the microtiter plate. 6. Container for Wash Solution [ STORAGE OF THE KITS ] 1. For unopened kit: All the reagents should be kept according to the labels on vials. The Standard, Detection Reagent A, Detection Reagent B and the 96-well strip plate should be stored at -20oC upon receipt while the others should be at 4 oC. 2. For opened kit: When the kit is opened, the remaining reagents still need to be stored according to the above storage condition. Besides, please return the unused wells to the foil pouch containing the desiccant pack, and reseal along entire edge of zip-seal. -
Inhibitory Effects of Activin on the Growth and Morphogenesis of Primary and Transformed Mammary Epithelial Cells'
ICANCERRESEARCH56. I 155-I 163. March I. 19961 Inhibitory Effects of Activin on the Growth and Morphogenesis of Primary and Transformed Mammary Epithelial Cells' Qiu Yan Liu, Birunthi Niranjan, Peter Gomes, Jennifer J. Gomm, Derek Davies, R. Charles Coombes, and Lakjaya Buluwela2 Departments of Medical Oncology (Q. Y. L, P. G.. J. J. G., R. C. C., L B.J and Biochemistry (Q. Y. L. L B.J. Charing Cross and Westminster Medical School, Fuiham Palace Road. London W6 8RF; Division of Cell Biology and Experimental Pathology. Institute of Cancer Research, 15 Cotswald Rood, Sutton. Surrey SM2 SNG (B. NJ; and FACS Analysis Laboratory. imperial Cancer Research Fund, Lincoln ‘sInnFields. London WC2A 3PX (D. DI, United Kingdom ABSTRACT logical activities of activin. Indeed, two types of activin receptors have aLready been identified in the mouse (28) and several forms in Activin Is a member of the transforming growth factor fi superfamily, Xenopus (29, 30). The sequences of the Act-RI! (3 1), the TGF-@ type which is known to have activities Involved In regulating differentiation II receptor (32), the TGF-f3 type I receptor (33), and various activin and development. By using reverse transcrlption.PCR analysis on immu noafflnity.purlfied human breast cells, we have found that activin IJa and receptor-like genes (34) have been described. The comparison of these activin type II receptor are expressed by myoepithelial cells, whereas no sequences shows that they belong to a newly defined family of expression was detected In other breast cell types. In examining 15 breast membrane-bound, ligand-activated serine-threonine kinases (35). -
Testicular Expression of Inhibin and Activin Subunits and Follistatin in the Rat and Human Fetus and Neonate and During Postnatal Development in the Rat*
0013-7227/97/$03.00/0 Vol. 138, No. 5 Endocrinology Printed in U.S.A. Copyright © 1997 by The Endocrine Society Testicular Expression of Inhibin and Activin Subunits and Follistatin in the Rat and Human Fetus and Neonate and During Postnatal Development in the Rat* GREGOR MAJDIC, ALLAN S. MCNEILLY, RICHARD M. SHARPE, LEE R. EVANS, NIGEL P. GROOME, AND PHILIPPA T. K. SAUNDERS Medical Research Council Reproductive Biology Unit (G.M., A.S.M., R.M.S., P.T.K.S.), Edinburgh, EH3 9EW, United Kingdom; and the School of Biological and Molecular Sciences (L.R.E., N.P.G.), Oxford Brookes University, Headington, Oxford, OX3 0BP, United Kingdom ABSTRACT than immunostaining for the a-subunit. The pattern of bB-immuno- Inhibins, activins, and follistatins are all believed to play roles in staining in postnatal samples paralleled that of the a-subunit. Im- the regulation of FSH secretion by the pituitary and in the paracrine munostaining using antibodies against the bA-subunit did not pro- regulation of testis function. Previous studies have resulted in con- duce any significant reaction product in any sample. Follistatin was flicting data on the pattern of expression of the inhibin/activin sub- undetectable in the fetal rat testis but appeared in the Leydig cells units, and little information on expression of follistatin during fetal/ immediately after birth and its expression remained intense through- neonatal life. We have made use of new, highly specific monoclonal out postnatal development and in adult testis. No evidence was ob- antibodies and fixed tissue sections from fetal, neonatal, and adult tained for expression of either the inhibin/activin subunits or follista- rats, and limited amounts of fetal and neonatal human testis, to tin in the germ cells, peritubular myoid cells, or other interstitial cells undertake a detailed immunocytochemical study of the pattern of in any of the sections examined. -
Peripheral Myelin Protein 22 (Pmp22) Is in a Complex with Alpha6 Beta4 Integrin and the Absence of Pmp22 Affects Schwann Cell Adhesion and Migration
PERIPHERAL MYELIN PROTEIN 22 (PMP22) IS IN A COMPLEX WITH ALPHA6 BETA4 INTEGRIN AND THE ABSENCE OF PMP22 AFFECTS SCHWANN CELL ADHESION AND MIGRATION By STEPHANIE ANN AMICI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2006 Copyright 2006 by Stephanie Ann Amici I dedicate this work to my family for their constant love and support. ACKNOWLEDGMENTS Most importantly, I would like to thank my advisor, Dr. Lucia Notterpek, for the inspiration and support she has given to me. She has always had my best interests in mind and has been essential in my growth as a scientist and as a person. I also express my gratitude to my committee members, Dr. Brad Fletcher, Dr. Dena Howland, Dr. Harry Nick and Dr. Susan Frost, for their insights and suggestions for my project. Similarly, Dr. William Dunn deserves acknowledgement for his advice and assistance with the electron microscopy studies. Heartfelt thanks also go to the past and present members of the Notterpek lab for their amazing friendships over the years. Finally, my deepest gratitude goes to my family, especially my parents, for their continuous love and encouragement throughout my life. iv TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iv LIST OF FIGURES .......................................................................................................... vii LIST OF ABBREVIATIONS........................................................................................... -
Bulk Drug Substances Under Evaluation for Section 503A
Updated July 1, 2020 Bulk Drug Substances Nominated for Use in Compounding Under Section 503A of the Federal Food, Drug, and Cosmetic Act Includes three categories of bulk drug substances: • Category 1: Bulk Drug Substances Under Evaluation • Category 2: Bulk Drug Substances that Raise Significant Safety Concerns • Category 3: Bulk Drug Substances Nominated Without Adequate Support Updates to Section 503A Categories • Removal from category 3 o Artesunate – This bulk drug substance is a component of an FDA-approved drug product (NDA 213036) and compounded drug products containing this substance may be eligible for the exemptions under section 503A of the FD&C Act pursuant to section 503A(b)(1)(A)(i)(II). This change will be effective immediately and will not have a waiting period. For more information, please see the Interim Policy on Compounding Using Bulk Drug Substances Under Section 503A and the final rule on bulk drug substances that can be used for compounding under section 503A, which became effective on March 21, 2019. 1 Updated July 1, 2020 503A Category 1 – Bulk Drug Substances Under Evaluation • 7 Keto Dehydroepiandrosterone • Glycyrrhizin • Acetyl L Carnitine/Acetyl-L- carnitine • Kojic Acid Hydrochloride • L-Citrulline • Alanyl-L-Glutamine • Melatonin • Aloe Vera/ Aloe Vera 200:1 Freeze Dried • Methylcobalamin • Alpha Lipoic Acid • Methylsulfonylmethane (MSM) • Artemisia/Artemisinin • Nettle leaf (Urtica dioica subsp. dioica leaf) • Astragalus Extract 10:1 • Nicotinamide Adenine Dinucleotide (NAD) • Boswellia • Nicotinamide -
Intra-Articular Corticosteroid and Hyaluronic Acid Injections in the Management of Osteoarthritis
78 Review / Derleme Intra-Articular Corticosteroid and Hyaluronic Acid Injections in the Management of Osteoarthritis Osteoartrit Tedavisinde ‹ntraartiküler Kortikosteroid ve Hyaluronik Asit Enjeksiyonlar› G. Guy VANDERSTRAETEN, Martine De MUYNCK, Luc Vanden BOSCCHE, Tina DECORTE Ghent University Hospital, Department of Physical Medicine and Rehabilitation, Ghent, Belgium Summary Özet Intra-articular corticosteroid injections have long been used to treat oste- Eklem içi kortikosteroid enjeksiyonlar› osteoartrit tedavisinde uzun sü- oarthritis, whereas intra-articular hyaluronic acid injections for only a few reden beri kullan›lmaktad›r. Oysa eklem içi hyaluronik asit injeksiyonlar› years. In the literature, evidence-based reports on the efficacy of these sadece son y›llarda kullan›l›r hale gelmifltir. Literatürde bu ajanlar›n et- compounds are non-existent. In the presence of acute hydrops in an oste- kinli¤i aç›s›ndan kan›ta dayal› raporlar bulunmamaktad›r. Osteoartritli oarthritic knee an intra-articular corticosteroid injection following aspirati- bir dizde akut efüzyon varl›¤›nda eklemden aspirasyonu takiben eklem on of the joint can be considered. A maximum of 3 injections can be admi- içi kortikosteroid uygulamas› düflünülebilir. 8-10 günlük aralar ile en faz- nistered at intervals of 8 to 10 days, to be repeated every 6 months if ab- la 3 enjeksiyon uygulanabilir ve e¤er çok gerekli ise her 6 ayda bir tek- solutely necessary. A patient with a dry and painful osteoarthritic knee can rarlanabilir. Kuru ve a¤r›l› bir diz ise haftal›k aralar ile uygulanan eklem be a candidate for intra-articular hyaluronic acid injections at weekly inter- içi hyaluronik asit enjeksiyonu için aday olabilir.