Back Ground Mechanical Recycling

Total Page:16

File Type:pdf, Size:1020Kb

Back Ground Mechanical Recycling BACK European Bioplastics e.V. Marienstr. 19/20 10117 Berlin European Bioplastics e.V. GROUND Marienstr. 19/20, 10117 Berlin phone +49.30.28 48 23 50 JULfax +49.30.28 2020 48 23 59 e-mail [email protected] web www.european-bioplastics.org MECHANICAL RECYCLING VR 19997 Nz, Amtsgericht Charlottenburg, USt-IdNr. DE235874231 HypoVereinsbank Rosenheim, BLZ 711 200 77, Konto 6356800, IBAN DE26 7112 0077 0006 3568 00, BIC/SWIFT HYVEDEMM448 BACK GROUND JUL 2020 European Bioplastics e.V. Marienstr. 19/20 10117 Berlin European Bioplastics e.V. Marienstr. 19/20, 10117 Berlin ABSTRACT phone +49.30.28 48 23 50 fax +49.30.28 48 23 59 Mechanical Recycling is currently the dominant recycling technique for post-consumere-mail [email protected] packaging waste. Sorting web www.european-bioplastics.org and reprocessing technologies are available in most EU Member States with varying levels of recycling quotas. EU waste legislation requires binding recycling targets in the future. Recycling bio-based plastics increases the fossil carbon reduction potential by keeping the renewable carbon in the material cycle even longer. Drop-in bio-based plastics with the same chemical structure are already mechanically recycled together with their fossil-based counterparts. Innovative bio-based plastics with new chemical structures can be commercially recycled once their amounts in the waste streams become high enough to make this feasible from an economic point of view. For some of these bio-based plastics mechanical recycling already takes place at small scale. 1. MECHANICAL RECYCLING TECHNOLOGY LANDSCAPE Technology description in specialised facilities, designed to separate the different Mechanical recycling refers to operations that aim to reco- materials. The proper identification of the materials is essen- ver plastics via mechanical processes (grinding, washing, tial for achieving a maximised purity of recyclates. For this separating, drying, re-granulating and compounding), thus purpose, various technologies such as near infrared (NIR), producing recyclates that can be converted into plastics laser, or x-ray-based techniques are available. NIR-units are products, substituting virgin plastics. It is also known as widely used and form the state of the art in several Euro- material recycling, material recovery or, related to plastics, pean countries for sorting mixed post-consumer packaging. back-to-plastics recycling. In mechanical recycling, plastic Although sorting technology has increased its accuracy, waste (sorted by material type) is milled and washed, passes sorting efficiency never reaches 100% due to separation a flotation separation, and is dried. The plastic flakes are flaws and laminated or blended products that cannot be then either used directly to produce new plastic materials separated into their original materials. This often leads to or they are processed into granulates beforehand. contamination of recycled plastics with other plastics and all kinds of additives. The quality of sorting processes is also Mechanical recycling is used for the recovery of pre-consumer dependent on the efficiency of collection schemes, which (post-industrial) material as well as for post-consumer plastic vary widely even within EU member states.1 waste. It is currently the dominating method of recycling post-consumer plastic waste in Europe. For mechanical Reprocessing recycling, only thermoplastic materials are of interest, i.e. After cleaning and grinding processes, the materials are polymeric materials that can be re-melted and re-processed recovered through remelting and regranulating. The resulting into products via techniques such as injection moulding or recyclates can be processed with all common technologies extrusion. It is a well-established technology for the material for plastics conversion. During melting and reprocessing, recovery of plastic materials such as polypropylene (PP), high temperatures and shear forces can cause thermal and polyethylene (PE) or polyethylene terephthalate (PET). mechanical degradation of polymers, affecting polymer chain length and distribution. This may influence material Sorting properties, such as crystallinity or mechanical strength.2 If Post-consumer plastic waste is usually a very inhomogene- the quality is sufficient after sorting and reprocessing, the ous and contaminated waste fraction. It comprises a huge recycled materials can be reused in the same or similar pro- range of material types (e.g. multilayer films, blends, and ducts. By recovering plastic materials for reuse, virgin plastic composites) with shape, colour and size varying widely. materials are replaced, contributing to a circular economy. Therefore, in a first step, the plastic waste passes extensive However, the resulting quality often only allows the use in manual and/or automated mechanical sorting processes lower value applications (so-called down-cycling). 1 For moreVR 19997 information Nz, on Amtsgericht sorting, please see:Charlottenburg, “Plastics Recyclers USt-IdNr. Europe: Guidance DE235874231 on quality sorting of plastic packaging. Establishing highly refined packaging waste streams.” 2019. 2 Luijsterburg, B.J.: Mechanical recycling of plastic packaging waste. Technische Universiteit Eindhoven. 2015. HypoVereinsbank Rosenheim, BLZ 711 200 77, Konto 6356800, IBAN DE26 7112 0077 0006 3568 00, BIC/SWIFT HYVEDEMM448 2 BACK GROUND JUL 2020 European Bioplastics e.V. Marienstr. 19/20 10117 Berlin European Bioplastics e.V. Marienstr. 19/20, 10117 Berlin Technology distribution phone +49.30.28 48 23 50 In various European countries, plastics collection and recyc- These inconsistenciesfax mean+49.30.28 that official 48 23 59 recycling rates ling systems are in place, focussing mainly on the major, high are neither very meaningfule-mail [email protected] comparable. The European web www.european-bioplastics.org volume plastics such as HDPE, LDPE, PET, PP and PS. In Union has started legislative efforts to increase uniform 2018, 32.5% of post-consumer plastic waste was collected reporting (see below). Data on the amount of waste that is to be recycled in Europe (28 EU member states including not only collected but also actually recycled is scarce. For Norway and Switzerland)3, with mechanical recycling being the Netherlands, in 2018, 47% of used plastic was collected, currently almost the sole form of recycling in Europe. The of which 33% was actually recycled – a total recycling rate recycling rates for post-consumer plastic waste vary widely of only 16%.5 Furthermore, there is a wide range of post- among EU member states, from around 20% in Bulgaria consumer plastics, which are not being recycled because and Finland to up to 45% in Norway.4 Variation in numbers of their low volume or complexity, such as multilayer films, is due to different calculation methods and differences in blends, composite items, and items contaminated with food definitions. In some Member States, the amount of waste that or other residues. It is expected that with further improve- enters pre-treatment, such as sorting, is already calculated ments in product design, waste collection and treatment, as being recycled, other countries also count waste that is the volume of recycled plastics will increase. being exported as recycled. Figure 1: Plastic post consumer waste rates of recycling, energy recovery and landfill per country in 2018. Source: Plastics Europe. Plastics – the Facts 2019. 3 PlasticsEurope, Plastics – the Facts, 2019. 4 Ibid. 5 Plastics Europe: Levenscyclus van plastics in Nederland. 2018. VR 19997 Nz, Amtsgericht Charlottenburg, USt-IdNr. DE235874231 HypoVereinsbank Rosenheim, BLZ 711 200 77, Konto 6356800, IBAN DE26 7112 0077 0006 3568 00, BIC/SWIFT HYVEDEMM448 3 BACK GROUND JUL 2020 European Bioplastics e.V. Marienstr. 19/20 10117 Berlin European Bioplastics e.V. Marienstr. 19/20, 10117 Berlin 2. REGULATORY FRAMEWORK, STANDARDS AND phoneLABELLING+49.30.28 48 23 50 fax +49.30.28 48 23 59 EU recycling targets ducts by 2025.9 Thise-mail is [email protected] to boost awareness and web www.european-bioplastics.org In the European Union, the legal framework for mechanical demand and shall be achieved by reliable self-commitments recycling is laid down in the Waste Framework Directive of the industry. 2008/98/EC (WFD), the Packaging and Packaging Waste Directive 94/62/EC (PPWD) and the Landfill Directive 1999/31/ Standards and Labelling EC (indirectly). The standardisation of recycled plastics largely has been driven by the Packaging and Packaging Waste Directive EU legislation poses new requirements to the plastics and 94/62/EC (PPWD). It requires that Member States ensure recycling industry, extending the share of recycling over time. that packaging complies with the “Essential Requirements” In May 2018, a new European waste legislation package (laid down in Annexe II of the PPWD), which have been was adopted, which sets out new legally binding targets for “translated” into standards by CEN. Plastic recycling and recycling, within the EU’s drive towards a Circular Economy6. recyclates are defined by a number of standards of the General recycling targets for municipal waste have been EN134xx (Packaging) and the EN 1534x (Plastics) series. set at 55% by 2025, and 60% by 2030. General targets for These standards define e.g. minimum quality criteria of plastic packaging waste have been set at 50% by 2025 and recycled plastics and criteria for recycling. 55% by 2030. The legislation, which
Recommended publications
  • Perceived Value Influencing the Household Waste Sorting
    International Journal of Environmental Research and Public Health Article Perceived Value Influencing the Household Waste Sorting Behaviors in Rural China Ying Ma 1,2, Mansoor Ahmed Koondhar 1, Shengke Liu 1, Huiling Wang 1 and Rong Kong 1,* 1 School of Economics and Management, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, China; [email protected] (Y.M.); [email protected] (M.A.K.); [email protected] (S.L.); [email protected] (H.W.) 2 School of Economics and Management, Xi’an Shiyou University, No. 18 Dianzi Road, Xi’an 710065, China * Correspondence: [email protected] Received: 25 July 2020; Accepted: 19 August 2020; Published: 21 August 2020 Abstract: Waste sorting is the cardinal measurement to solve the problem of low efficiency of rural environmental governance and to alleviate environmental pollution by reduction, recycling, and harmlessness in rural areas. However, non-excludable and non-rival features of public goods easily cause a wide free-rider problem, which results in a low frequency of participation in the waste sorting of rural people. Based on the theory of the utility maximization of the rational economic man, this paper investigates survey data of 688 farm households in three cities and three counties of Shaanxi Province to explore the effect of the perceived value on the household waste classification behavior based on cost-benefit analysis. The results show that perceived benefit and perceived cost are important perceived value factors affecting farmers’ participation in waste sorting. Specifically, the spiritual benefit of the perceived benefit has a significantly positive impact on classification behavior, while the time cost, physical cost, and material cost of the perceived cost have a negative impact on waste classification behavior.
    [Show full text]
  • Types of Plastic and Their Recycle Codes | Quality Logo Products®
    7/24/2018 Types of Plastic and Their Recycle Codes | Quality Logo Products® Product Search Your privacy will be protected by redirecting your search to Search Encrypt. Learn More X ALL ABOUT MATERIALS Types of Plastic and Their Recycle Codes Other Lessons in This Course Types of Plastic Plastic is an essential component of many items, including water bottles, combs, and beverage containers. Knowing the difference, as well as the SPI codes, will help you make more informed decisions about recycling. The seven types of plastic include: Polyethylene Terephthalate (PETE or PET) High-Density Polyethylene (HDPE) Polyvinyl Chloride (PVC) Miscellaneous plastics (includes: polycarbonate, polylactide, acrylic, acrylonitrile butadiene, styrene, fiberglass, and nylon) When it comes to promotional giveaways, and even items we use around the house, there is no material more important than plastic. The same can be said for the items we use at the office. Most of our supplies contain at least a little bit of this material. In fact, humans have thus far produced 9.1 billion tons of plastic! For the sake of the environment, it’s important to know the different types of plastic and their uses, as well as the resin identification codes found on each for the sake of recycling. Recycling Codes for Plastic Understanding the different types of plastic can help consumers like you make more informed decisions related to your health and the environment. It’s important to become familiar with an item’s SPI (Society of the Plastics Industry) code, which is also known as a resin identification number and is used to classify the different types of plastic.
    [Show full text]
  • Primary Microplastics in the Oceans: a Global Evaluation of Sources Authors: Julien Boucher, Damien Friot
    Primary Microplastics in the Oceans: a Global Evaluation of Sources Authors: Julien Boucher, Damien Friot INTERNATIONAL UNION FOR CONSERVATION OF NATURE Primary Microplastics in the Oceans: a Global Evaluation of Sources Authors: Julien Boucher, Damien Friot The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN. Published by: IUCN, Gland, Switzerland Copyright: © 2017 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Boucher, J. and Friot D. (2017). Primary Microplastics in the Oceans: A Global Evaluation of Sources. Gland, Switzerland: IUCN. 43pp. ISBN: 978-2-8317-1827-9 DOI: dx.doi.org/10.2305/IUCN.CH.2017.01.en Authors: Julien Boucher EA – Shaping Environmental Action & University of Applied Sciences and Arts Western Switzerland // HES-SO, HEIG-VD, Yverdon-les-Bains, Switzerland Damien Friot EA – Shaping Environmental Action www.shaping-ea.com [email protected] Editor: Carl Gustaf Lundin and João Matos de Sousa External reviewers: Francis Vorhies (Earthmind, http://earthmind.org) François Galgani (IFREMER, Laboratoire LER/PAC) Mathieu Pernice (University of Technology, Sydney) Doug Woodring (www.oceanrecov.org) Designed by: Imre Sebestyén jr.
    [Show full text]
  • The Facts About Plastic Bags: Recyclable, Affordable, and Convenient
    THE FACTS ABOUT PLASTIC BAGS: RECYCLABLE, AFFORDABLE, AND CONVENIENT Plastic bags are 100% recyclable, reusable, made from natural gas, not oil, and a sustainable choice for consumers, communities and businesses. What’s more, the plastic bag manufacturing and recycling industry is a uniquely American industry that employs more than 30,000 Americans in 349 plants across the country, including more than 1,000 people in Washington state. Bans and taxes on plastic bags are misguided policies that don’t make sense. They don’t help the environment, force less sustainable options, threaten local manufacturing jobs and raise grocery costs for consumers. Instead of banning a reusable, 100% recyclable, American-made product, recycling solutions can help reduce litter, give consumers a choice, and protect American jobs. Plastic grocery bags are the best checkout option for our environment On a per bag basis, plastic bags are more resource efficient, reduce landfill waste and generate fewer greenhouse gas emissions. o They take up a lot less space in a landfill: 1,000 plastic bags weigh 13 pounds; 1,000 paper bags weigh 114 pounds.i o They generate 80 % less waste than paper bags.ii American plastic bags are made from natural gas, NOT oil. In the U.S., 85 percent of the raw material used to make plastic bags is produced from natural gas.iii Recycled plastic bags are used to make new plastic bags and building products, such as backyard decks, playground equipment, and fences. Bans haven’t worked in other places, and don’t protect the environment A ban would make no difference in litter reduction since plastic bags only make up a tiny fraction (less than 0.5 %) of the U.S.
    [Show full text]
  • Improving Plastics Management: Trends, Policy Responses, and the Role of International Co-Operation and Trade
    Improving Plastics Management: Trends, policy responses, and the role of international co-operation and trade POLICY PERSPECTIVES OECD ENVIRONMENT POLICY PAPER NO. 12 OECD . 3 This Policy Paper comprises the Background Report prepared by the OECD for the G7 Environment, Energy and Oceans Ministers. It provides an overview of current plastics production and use, the environmental impacts that this is generating and identifies the reasons for currently low plastics recycling rates, as well as what can be done about it. Disclaimers This paper is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and the arguments employed herein do not necessarily reflect the official views of OECD member countries. This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. For Israel, change is measured between 1997-99 and 2009-11. The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The use of such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli settlements in the West Bank under the terms of international law. Copyright You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given.
    [Show full text]
  • Overview of Industrial Waste Management
    Overview of Industrial Waste Management Ajith de Alwis Chemical and Process Engineering Office of Science Technology and Innovation I N D Public Solid U Non W Hazardous S T PPP A R Y S Liquid B Private T A C E Hazardous K B Air O N E New Industries and Infrastructure • Ports and related infrastructure • Airports • Highways • Power stations – Coal • Industrial Estates • Export led manufacturing industries • Food Processing • Mineral Processing and Value Addition • Tourism • Urban growth - Metros • Nanoscience Park • Off shore Oil Exploration Analysis • Policy Aspects • Regulatory Environment • Human Resources Availability • Planning Aspects • Technology Aspects • Industry Mentality • Market requirements • Stakeholder requirements Policy Goals 1. Achieve Sustainable Development in Sri Lanka 2. Improve Environmental Quality throughout Sri Lanka 3. Improve eco-efficiency across all sectors of the economy in Sri Lanka 4. Alleviate Poverty and Improve the Living standards of all Sri Lankans 6 Prescribed Projects Approach to Environmental Protection Extreme Moderate No Change Change Change Government Authoritarian more than civil environmentalism society Government Moderate and Civil Environmentalism Society Civil Society Corporate Anti more than Environmentalism environmentalism Government EPL 6980 industries without an EPL Lankadeepa Oct 11, 2011 Illegal Dumping Due Diligence & LC Responsibility …. A Structural Failure ! BOARD OF DIRECTORS CHAIRMAN FINANCE DIRECTOR ACCOUNTANT GENERAL MANAGER CLERKS PRODUCTION & ADMINISTRATION MANAGER PROCESS
    [Show full text]
  • Waste Incineration and Informal Livelihoods: a Technical Guide on Waste-To-Energy Initiatives
    WIEGO Technical Brief No 11 August 2019 Waste Incineration and Informal Livelihoods: A Technical Guide on Waste-to-Energy Initiatives Jeroen IJgosse WIEGO Technical Briefs The global research-policy-action network Women in Informal Employment: Globalizing and Organizing (WIEGO) Technical Briefs provide guides for both specialized and nonspecialized audiences. These are designed to strengthen understanding and analysis of the situation of those working in the informal economy as well as of the policy environment and policy options. About the Author: Jeroen IJgosse is a senior international solid waste management advisor, an urban environmental specialist, trainer and process facilitator with 25 years of experience in solid waste management in Latin America, Africa, Asia and Eastern Europe. He has worked extensively in the fields of planning, process facilitation, institutional strengthening, policy development, financial issues, due diligence assessment and inclusive processes involving informal actors in solid waste management. After 20 years living and working in Latin America, he currently resides in the Netherlands. Publication date: August, 2019 ISBN number: 978-92-95106-36-9 Please cite this publication as: IJgosse, Jeroen. 2019. Waste Incineration and Informal Livelihoods: A Technical Guide on Waste-to-Energy Initiatives. WIEGO Technical Brief No. 11. Manchester, UK: WIEGO. Series editor: Caroline Skinner Copy editor: Megan MacLeod Layout: Julian Luckham of Luckham Creative Cover photo: Waste pickers working at the Kpone Landfill in Tema, Ghana face the threat of losing access to waste for recycling. Photo: Dean Saffron Published by Women in Informal Employment: Globalizing and Organizing (WIEGO) A Charitable Company Limited by Guarantee – Company No. 6273538, Registered Charity No.
    [Show full text]
  • Plastic Industry Awareness of the Ocean Plastics Problem
    Fueling Plastics Plastic Industry Awareness of the Ocean Plastics Problem • Scientists became aware of the ocean plastics problem in the 1950s, and understanding of the nature and severity of the problem grew over the next decades. • The major chemical and petroleum companies and industry groups were aware of the ocean plastics problem no later than the 1970s. • Plastics producers have often taken the position that they are only responsible for plastic waste in the form of resin pellets, and that other forms of plastic waste are out of their control. The use of plastics in consumer resins and the fossil fuel companies the twentieth century. Early observ- goods has been expanding exponen- supplying them with chemical feed- ers concerned about marine plas- tially since the late 1940s. Within stocks — have known about this tics were specifically worried about years of that expansion beginning, problem and for how long. The re- marine animals becoming entan- observers began to document plas- mainder of this document presents a gled in discarded fishing gear and tic pollution in the environment, brief overview of the history of pub- other plastic wastes. As noted by including in the world’s oceans. lic and industry awareness of marine the United States’ National Oce- Plastic is a pollutant of unique con- plastic pollution. Although this his- anic and Atmospheric Administra- cern because it is durable over long torical account is detailed, it is far tion (NOAA), “[p]rior to the 1950s periods of time and its effects accu- from comprehensive, and additional much of the fishing gear and land- mulate as more of it is produced and research is forthcoming.
    [Show full text]
  • The Global E-Waste Monitor 2020 Quantities, Flows, and the Circular Economy Potential
    The Global E-waste Monitor 2020 Quantities, flows, and the circular economy potential Authors: Vanessa Forti, Cornelis Peter Baldé, Ruediger Kuehr, Garam Bel Contributions by: S. Adrian, M. Brune Drisse, Y. Cheng, L. Devia, O. Deubzer, F. Goldizen, J. Gorman, S. Herat, S. Honda, G. Iattoni, W. Jingwei, L. Jinhui, D.S. Khetriwal, J. Linnell, F. Magalini, I.C. Nnororm, P. Onianwa, D. Ott, A. Ramola, U. Silva, R. Stillhart, D. Tillekeratne, V. Van Straalen, M. Wagner, T. Yamamoto, X. Zeng Supporting Contributors: 2 The Global E-waste Monitor 2020 Quantities, flows, and the circular economy potential Authors: Vanessa Forti, Cornelis Peter Baldé, Ruediger Kuehr, Garam Bel Contributions by: S. Adrian, M. Brune Drisse, Y. Cheng, L. Devia, O. Deubzer, F. Goldizen, J. Gorman, S. Herat, S. Honda, G. Iattoni, W. Jingwei, L. Jinhui, D.S. Khetriwal, J. Linnell, F. Magalini, I.C. Nnororm, P. Onianwa, D. Ott, A. Ramola, U. Silva, R. Stillhart, D. Tillekeratne, V. Van Straalen, M. Wagner, T. Yamamoto, X. Zeng 3 Copyright and publication information 4 Contact information: Established in 1865, ITU is the intergovernmental body responsible for coordinating the For enquiries, please contact the corresponding author C.P. Baldé via [email protected]. shared global use of the radio spectrum, promoting international cooperation in assigning satellite orbits, improving communication infrastructure in the developing world, and Please cite this publication as: establishing the worldwide standards that foster seamless interconnection of a vast range of Forti V., Baldé C.P., Kuehr R., Bel G. The Global E-waste Monitor 2020: Quantities, communications systems. From broadband networks to cutting-edge wireless technologies, flows and the circular economy potential.
    [Show full text]
  • Integrated Waste to Energy and Liquid Fuel Plants: Key to Sustainable Solid Waste Management
    Integrated Waste to Energy and Liquid Fuel Plants: Key to Sustainable Solid Waste Management Bary Wilson, Ph.D. Barry Liss, Ph.D., P.E Brandon Wilson, Ph.D., P.E May 2019 EnviroPower Renewable, Inc. 7301A Palmetto Parkway Rd. Suite 206B Boca Raton, FL 33433 www.eprenewable.com EPR Doc. 05212019 © 2019 EPR All Rights Reserved 1 Table of Contents Executive Summary ................................................................................................................................... 3 Introduction .............................................................................................................................................. 4 Background ............................................................................................................................................... 4 Plastics................................................................................................................................................... 5 Plastics Recycling................................................................................................................................... 6 Diesel Fuels ........................................................................................................................................... 6 Premium Diesel ..................................................................................................................................... 7 Biodiesel and Renewable Diesel ..........................................................................................................
    [Show full text]
  • North American Recycled Plastic Processing Capacity Increases Published January 17, 2020
    NERC‐NEWMOA REGIONAL RECYCLING MARKETS COMMITTEE North American Recycled Plastic Processing Capacity Increases Published January 17, 2020 INTRODUCTION The following is a list of increases in North American capacity to process recyclable plastics into products such as plastic lumber, pellets or resins for end‐markets. These increases were announced or completed in 2017 or later. The list covers facilities that have been publicly identified in either the trade or local press. Details of these new plastic processing facilities tend to have less information than similar announcements of expanded recycled end‐market capacity in the paper industry. For instance, announcements of projected opening dates have not, in many cases, been accompanied by press releases or news stories confirming the opening. In addition, few of the facilities are taking mixed plastics. Instead, they are relying on MRFs or other processors to do the initial resin sorting. Each facility listing includes: Name and whether new or expanded facility location projected processing capacity (input) and/or production capacity (output) in tons per year (TPY) 1 product projected opening date This list will be updated as new capacity is announced or new information received. If you have information about capacity expansions not listed here or corrections to the information on this list, please contact Chaz Miller, Chair, NERC‐NEWMOA Regional Recycling Markets Committee, [email protected], 301‐346‐6507. List of acronyms ABS = acrylonitrile butadiene styrene PET = polyethylene terephthalate EPS = expanded polystyrene PP = polypropylene HDPE = high density polyethylene PVC = poly vinyl chloride LDPE = low density polyethylene RPET = recycled PET LLDPE = linear low‐density polyethylene TPM = tons per month PC = polycarbonate TPY = tons per year 1 Some facilities reported in metric tonnes per year.
    [Show full text]
  • Bio-Based and Biodegradable Plastics – Facts and Figures Focus on Food Packaging in the Netherlands
    Bio-based and biodegradable plastics – Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Rapport nr. 1722 Bio-based and biodegradable plastics - Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Report 1722 Colophon Title Bio-based and biodegradable plastics - Facts and Figures Author(s) Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Number Wageningen Food & Biobased Research number 1722 ISBN-number 978-94-6343-121-7 DOI http://dx.doi.org/10.18174/408350 Date of publication April 2017 Version Concept Confidentiality No/yes+date of expiration OPD code OPD code Approved by Christiaan Bolck Review Intern Name reviewer Christaan Bolck Sponsor RVO.nl + Dutch Ministry of Economic Affairs Client RVO.nl + Dutch Ministry of Economic Affairs Wageningen Food & Biobased Research P.O. Box 17 NL-6700 AA Wageningen Tel: +31 (0)317 480 084 E-mail: [email protected] Internet: www.wur.nl/foodandbiobased-research © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. The publisher does not accept any liability for inaccuracies in this report. 2 © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research Preface For over 25 years Wageningen Food & Biobased Research (WFBR) is involved in research and development of bio-based materials and products.
    [Show full text]