Delta IV AFSPC-6 Mission Overview

Total Page:16

File Type:pdf, Size:1020Kb

Delta IV AFSPC-6 Mission Overview DELTA IV AFSPC-6 MISSION DELTA IV MEDIUM+ (4,2) A United Launch Alliance (ULA) Delta IV Medium+ (4,2) will deliver two Geosynchronous Space Situational Awareness Program (GSSAP) satellites to near-geo- The Delta IV family of launch vehicles combines design simplicity, synchronous orbit. Liftoff will occur from Space Launch Complex-37 at Cape Canaveral Air Force Station (CCAFS), FL. manufacturing efficiency and streamlined mission and vehicle integration to meet customer launch requirements. The Delta IV Medium+ (4,2) The twin GSSAP spacecraft, built by Orbital ATK, will be a space-based capability operating in the near-geosynchronous orbit regime supporting U.S. Strategic configuration was used for the inaugural Delta IV flight and has become Command space surveillance operations, as a dedicated Space Surveillance Network (SSN) sensor, GSSAP satellites will support Joint Functional Component the most versatile rocket in the Delta IV fleet, launching national security, Command for Space (JFCC SPACE) tasking to collect space situational awareness data allowing for more accurate tracking and characterization of man-made civil and commercial missions. orbiting objects. From a near-geosynchronous orbit, they will have a clear, unobstructed and distinct vantage point for viewing Resident Space Objects (RSOs) without the interruption of weather or the atmospheric distortion that can limit ground-based systems. GSSAP satellites will operate near the geosynchronous belt First Launch: Nov. 20, 2002 and will have the capability to perform Rendezvous and Proximity Operations (RPO). RPO allows for the space vehicle to maneuver near a resident space object Launches to date: 13 of interest, enabling characterization for anomaly resolution and enhanced awareness, while maintaining flight safety. Data from GSSAP will uniquely contribute to timely and accurate orbital predictions, enhancing our knowledge of the geosynchronous orbit environment, and further enabling space flight safety to include Performance to GTO: 6,160 kg (13,580 lb) satellite collision avoidance. Performance to LEO-Reference: 12,900 kg (28,440 lb) GSSAP satellites will communicate information through the world wide Air Force Satellite Control Network (AFSCN) ground stations, then to Schriever Air Force Base, CO where 50th Space Wing satellite operators of the 1st Space Operations Squadron (1 SOPS) will oversee day-to-day operations. Two GSSAP satellites were previously launched aboard a ULA Delta IV M+ (4,2) rocket from CCAFS on July 28, 2014. Payload Fairing (PLF) The PLF is a composite bisector (two-piece shell), 4-meter diameter fairing. The PLF encapsulates the spacecraft to protect it from the launch environment on ascent. The vehicle’s height, with the 38.5-ft tall PLF, is approximately 206 ft. Delta Cryogenic Second Stage (DCSS) The DCSS stage propellant tanks are structurally rigid and constructed of isogrid aluminum ring forgings and spun-formed aluminum domes. It is a cryogenic liquid hydrogen/liquid oxygen-fueled vehicle, and uses a single RL10B-2 engine that produces 24,750 lb of thrust. The DCSS cryogenic tanks are insulated with a combination of spray-on and bond-on insu- lation, and helium-purged insulation blankets. An equipment shelf attached to the aft dome of the DCSS liquid oxygen tank provides the structural mountings for vehicle electronics. MISSION OVERVIEW Booster The common booster core (CBC) consists of the RS-68A engine, the engine section and thermal shield, the liquid hydrogen (LH2) tank, the centerbody, and the liquid oxygen (LO2) – 33rd Delta IV Launch tank. The Delta IV booster tanks are structurally rigid and constructed of isogrid aluminum With more than a century of combined heritage, United Launch Alliance is barrels, spun-formed aluminum domes and machined aluminum tank skirts. Delta IV booster the nation’s most experienced and reliable launch service provider. ULA – 110th ULA Launch propulsion is provided by the throttleable RS-68A engine system, designed and manufactured has successfully delivered more than 100 satellites to orbit that provide by Pratt & Whitney Rocketdyne, is the largest existing hydrogen-burning engine and delivers critical capabilities for troops in the field, aid meteorologists in tracking 702,000 lb of thrust at sea level. severe weather, enable personal device-based GPS navigation and unlock the mysteries of our solar system. Solid Rocket Motors (SRM) Two solid rocket motors, combined, produce an additional 517,085 lbs of thrust at liftoff. The SRMs are 5 ft in diameter and 53 ft long and constructed of a graphite-epoxy composite. Join the conversation: The SRMs are connected to the booster by two ball-and-socket joints and structural thrusters. AFSPC-6 will be the first Delta IV M+(4,2) flight supporting one fixed SRM and one vectorable SRM. ULALaunch.com Copyright © 2016 United Launch Alliance, LLC. All Rights Reserved. DELTA IV PRODUCTION AND LAUNCH MISSION PROFILE AND GROUND TRACE 1 De Soto,Soto, C ACA De•– RS-68RS-68A Soto, Engine Engine CA Fabrication Fabrication at at Aerojet Rocketdyne 1 De Soto, CA 2 21 BrighamDe• AerojetRS-68 Soto, EngineRocketdyne CACity ,Fabrication UT at Aerojet Rocketdyne De• RS-68 Soto, Engine CA Fabrication at Aerojet Rocketdyne 5 2 21 Brigham• SolidRS-68 Rocket EngineCity, City UTMotor ,Fabrication UT Fabrication at Aerojet at Alliant Rocketdyne Technologies 3 2 Brigham• RS-68 Engine City ,Fabrication UT at Aerojet Rocketdyne 4 2 23 DenverBrigham•– Solid Rocket, CO City Motor, UT Fabrication at Alliant Technologies 1 3 2 Brigham• Solid Rocket City Motor, UT Fabrication at Alliant Technologies 2 3 3 Denver• atULASolid Alliant HeadquartersRocket, COTechnologies Motor & Fabrication Design Center at Alliant Engineering Technologies 1 3 4 3 Denver• Solid Rocket, CO Motor Fabrication at Alliant Technologies 1 3 3 Denver•Denver, ULA Headquarters CO, CO & Design Center Engineering 1 4 •Decatur , AL 4 3 •Denver– ULA Headquarters, CO & Design Center Engineering 1 4 4 Decatur• PayloadULA Headquarters ,Fairing/Adapter AL & Design Fabrication Center Engineering 4 • CenterULA Headquarters Engineering & Design Center Engineering 4 5 4 Decatur• PayloadBooster ,FabricationFairing/Adapter AL Fabrication 5 4 •DecaturDecatur, PayloadBoosterSecond AL ,StageFabricationFairing/Adapter AL Fabrication Fabrication 5 • Booster Fabrication 5 •– BoosterSecondPayloadBooster, StageFabricationFairing/AdapterPayload Fabrication Fairing andFabrication 3 Time Time 5 5 •West SecondBooster Palm StageFabrication Beach, Fabrication FL Event (seconds) (hr:min:sec) • SecondRL10 Engine Stage Fabrication Fabrication at Aerojet Rocketdyne 5 West Palm Palm Beach, Beach, FL FL 1 RS-68A Engine Ignition -5.0 -00:00:05.0 5 •West RL10 Palm Engine Beach, Fabrication FL at Aerojet Rocketdyne West– RL10 Palm Engine Beach, Fabrication FL at Aerojet Liftoff (Thrust to Weight > 1) 0.0 00:00:00.0 5 •West RL10 Palm Engine Beach, Fabrication FL at Aerojet Rocketdyne • RocketdyneRL10 Engine Fabrication at Aerojet Rocketdyne Begin Pitch/Yaw Maneuver 8.0 00:00:08.0 Mach 1 43.8 00:00:43.8 Maximum Dynamic Pressure 56.6 00:00:56.6 2 SRM Burnout 93.8 00:01:33.8 1 Delta Operations Center (DOC) | Launch Control Center SRM Jettison 100.1 00:01:40.1 and Mission Director’s Center 3 Booster Engine Cutoff (BECO) 237.7 00:03:57.7 2 Horizontal Integration Facility | Receiving, inspection 1 Mobile Service Tower (MST) and integration First Stage Separation 245.1 00:04:05.1 2 Launch Vehicle Second Stage Ignition (MES1) 3 Receipt Inspection Shop | Receiving, inspection and 4 259.6 00:04:19.6 3 processing Launch Table 5 Payload Fairing Jettison 270.1 00:04:30.1 4 Spacecraft Processing Facility | Spacecraft processing, 4 Fixed Umbilical Tower (FUT) 2 testing and encapsulation 5 Lightning Protection Towers 5 Mobile Service Tower | Launch vehicle integration and 6 LH2 Storage Tank testing, spacecraft mate and integrated operations Longitude (deg) 1 Delta Operations Center (DOC) 7 LO2 Storage Tank Launch Control Center 1 80 Mission Director’s Center Second Stage Nozzle Extension Installation 1 4-m Spacecraft Control Room DCSS Communication Center 5 60 2 Horizontal Integration Facility Booster Receiving & Inspection BOSS Vehicle Integration Solid Rocket Motors 40 TEL-4 3 Receipt Inspection Shop COOK Receiving & Inspection Staging 2 20 Final Processing 3 4 3 5 (deg) 4 Spacecraft Processing 2 TDRS 171 TDRS 41 Facility 6 0 Spacecraft Processing, Testing & Encapsulation TDRS 275 4-m Payload 7 5 Mobile Fairing Halves -20 Geodetic Latitude Service Tower 4-m Payload Launch Vehicle Integration Adapter 3 & Testing, Spacecraft Mate, Fittings Integrated Operations -40 Umbilical Tower Spacecraft 1 -60 Telemetry Ground Station Launch Vehicle /Spacecraft Groundtrack 4 TDRS Asset Geostationary Orbital Position LaunchLau -80 TTablea 5 Payload -135 -90 -45 0 45 90 135 Transporter Space Launch Complex-37 All Values Approximate.
Recommended publications
  • RD-180—Or Bust?
    RD-180—or By Autumn A. Arnett, Associate Editor As it stands, the US could sustain its Bust? manifest for two years with the current supply of RD-180 engines. But a new he United States’ sustained access he doesn’t really know what that R&D engine could take seven or more years to space is in question. Heavily amounts to, but said he is hopeful the to be operational, making LaPlante’s Treliant on the Russian-made En- partnership will mean a new engine on “$64 million question” a “hydra-headed ergomash RD-180 engine to power its the market soon. monster,” in the words of former AFSPC launches, US military space personnel “Three years of development is better Commander Gen. William L. Shelton. are looking for a replacement because than starting at ground zero,” Hyten said. “I don’t think we build the world’s best of the tense and uncertain status of “If we start at ground zero to build a rocket engine,” Shelton said last July. “I American and Russian relations. new engine in the hydrocarbon technology would love for us as a nation to regain the Funds are already being appropriated area we’re fi ve years away from produc- lead in liquid rocket propulsion.” for research and development of a new tion, roughly, maybe four, maybe six. Both LaPlante and Hyten are propo- engine, but Gen. John E. Hyten, com- The one thing you would have to do is nents of the United States continuing to mander of Air Force Space Command, spend the next year or two driving down fund research and development of a new considers the issue to be urgent.
    [Show full text]
  • ULA Atlas V Launch to Feature Full Complement of Aerojet Rocketdyne Solid Rocket Boosters
    April 13, 2018 ULA Atlas V Launch to Feature Full Complement of Aerojet Rocketdyne Solid Rocket Boosters SACRAMENTO, Calif., April 13, 2018 (GLOBE NEWSWIRE) -- The upcoming launch of the U.S. Air Force Space Command (AFSPC)-11 satellite aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station, Florida, will benefit from just over 1.74 million pounds of added thrust from five AJ-60A solid rocket boosters supplied by Aerojet Rocketdyne. The mission marks the eighth flight of the Atlas V 551 configuration, the most powerful Atlas V variant that has flown to date. The Atlas V 551 configuration features a 5-meter payload fairing, five AJ-60As and a Centaur upper stage powered by a single Aerojet Rocket RL10C-1 engine. This configuration of the U.S. government workhorse launch vehicle is capable of delivering 8,900 kilograms of payload to geostationary transfer orbit (GTO), and also has been used to send scientific probes to explore Jupiter and Pluto. The Centaur upper stage also uses smaller Aerojet Rocketdyne thrusters for pitch, yaw and roll control, while both stages of the Atlas V employ pressurization vessels built by Aerojet Rocketdyne's ARDÉ subsidiary. "The Atlas V is able to perform a wide variety of missions for both government and commercial customers, and the AJ-60A is a major factor in that versatility," said Aerojet Rocketdyne CEO and President Eileen Drake. "Aerojet Rocketdyne developed the AJ-60A specifically for the Atlas V, delivering the first booster just 42 months after the contract award, which underscores our team's ability to design and deliver large solid rocket motors in support of our nation's strategic goals and efforts to explore our solar system." The flight of the 100th AJ-60A, the largest monolithically wound solid rocket booster ever flown, took place recently as part of a complement of four that helped an Atlas V 541 place the nation's newest weather satellite into GTO.
    [Show full text]
  • Starliner Rudolf Spoor Vertregt-Raket Van De Hoofdredacteur
    Starliner Rudolf Spoor Vertregt-raket Van de hoofdredacteur: Ook de NVR ontsnapt niet aan de gevolgen van het Corona- virus: zoals u in de nieuwsbrief heeft kunnen lezen zijn we genoodzaakt geweest de voor maart, april en mei geplande evenementen op te schorten. In de tussentijd zijn online ruimtevaart-gerelateerde initiatieven zeer de moeite waard om te volgen, en in de nieuwsbrief heeft u daar ook een overzicht van kunnen vinden. De redactie heeft zijn best gedaan om ook in deze moeilijke tijden voor u een afwisselend nummer samen te stellen, met onder andere aandacht voor de lancering van de eerste Starliner, een studentenproject waarin een supersone para- Bij de voorplaat chute getest wordt, tests van een prototype maanrover op het DECOS terrein in Noordwijk en een uitgebreide analyse Kunstzinnige weergave van de lancering van de Vertregt-raket vanuit met moderne middelen van het Vertregt raketontwerp uit de Suriname. De vlammen zijn gebaseerd op die van andere raketten jaren ‘50. Dit laatste artikel is geïnspireerd door de biografie met dezelfde stuwstoffen. [achtergrond: ESA] van Marius Vertregt die in het tweede nummer van 2019 gepubliceerd werd, en waarvan we een Engelstalige versie hebben ingediend voor het IAC 2020 in Dubai. Dit artikel is ook daadwerkelijk geselecteerd voor presentatie op de confe- rentie, maar door de onzekerheden rond het Coronavirus is de conferentie helaas een jaar uitgesteld. Ook andere artikelen uit Ruimtevaart worden in vertaalde vorm overgenomen door Engelstalige media. Zo verscheen het artikel van Henk Smid over Iraanse ruimtevaart uit het eerste nummer van dit jaar zelfs in de bekende online publicatie The Space Review.
    [Show full text]
  • Privacy Statement Link at the Bottom of Aerojet Rocketdyne Websites
    Privacy Notice Aerojet Rocketdyne – For external use Contents Introduction ...................................................................................................................... 3 Why we collect personal information? ............................................................................. 3 How we collect personal information? ............................................................................. 3 How we use information we collect? ............................................................................... 4 How we share your information? .................................................................................... 4 How we protect your personal information? ..................................................................... 4 How we collect consent? .............................................................................................. 4 How we provide you access? ........................................................................................ 4 How to contact Aerojet Rocketdyne privacy?.................................................................... 5 Collection of personal information .................................................................................. 5 Disclosure of personal information.................................................................................. 5 Sale of personal information .......................................................................................... 6 Children’s online privacy ..............................................................................................
    [Show full text]
  • 6. Chemical-Nuclear Propulsion MAE 342 2016
    2/12/20 Chemical/Nuclear Propulsion Space System Design, MAE 342, Princeton University Robert Stengel • Thermal rockets • Performance parameters • Propellants and propellant storage Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 Chemical (Thermal) Rockets • Liquid/Gas Propellant –Monopropellant • Cold gas • Catalytic decomposition –Bipropellant • Separate oxidizer and fuel • Hypergolic (spontaneous) • Solid Propellant ignition –Mixed oxidizer and fuel • External ignition –External ignition • Storage –Burn to completion – Ambient temperature and pressure • Hybrid Propellant – Cryogenic –Liquid oxidizer, solid fuel – Pressurized tank –Throttlable –Throttlable –Start/stop cycling –Start/stop cycling 2 2 1 2/12/20 Cold Gas Thruster (used with inert gas) Moog Divert/Attitude Thruster and Valve 3 3 Monopropellant Hydrazine Thruster Aerojet Rocketdyne • Catalytic decomposition produces thrust • Reliable • Low performance • Toxic 4 4 2 2/12/20 Bi-Propellant Rocket Motor Thrust / Motor Weight ~ 70:1 5 5 Hypergolic, Storable Liquid- Propellant Thruster Titan 2 • Spontaneous combustion • Reliable • Corrosive, toxic 6 6 3 2/12/20 Pressure-Fed and Turbopump Engine Cycles Pressure-Fed Gas-Generator Rocket Rocket Cycle Cycle, with Nozzle Cooling 7 7 Staged Combustion Engine Cycles Staged Combustion Full-Flow Staged Rocket Cycle Combustion Rocket Cycle 8 8 4 2/12/20 German V-2 Rocket Motor, Fuel Injectors, and Turbopump 9 9 Combustion Chamber Injectors 10 10 5 2/12/20
    [Show full text]
  • Jpc-Final-Program.Pdf
    49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (JPC) Advancing Propulsion Capabilities in a New Fiscal Reality 14–17 July 2013 San Jose Convention Center 11th International Energy Conversion San Jose, California Engineering Conference (IECEC) FINAL PROGRAM www.aiaa.org/jpc2013 www.iecec.org #aiaaPropEnergy www.aiaa.org/jpc2013 • www.iecec.org 1 #aiaaPropEnergy GET YOUR CONFERENCE INFO ON THE GO! Download the FREE Conference Mobile App FEATURES • Browse Program – View the program at your fingertips • My Itinerary – Create your own conference schedule • Conference Info – Including special events • Take Notes – Take notes during sessions • Venue Map – San Jose Convention Center • City Map – See the surrounding area • Connect to Twitter – Tweet about what you’re doing and who you’re meeting with #aiaaPropEnergy HOW TO DOWNLOAD Any version can be run without an active Internet connection! You can also sync an Compatible with itinerary you created online with the app by entering your unique itinerary name. iPhone/iPad, MyItinerary Mobile App MyItinerary Web App Android, and • For optimal use, we recommend • For optimal use, we recommend: rd BlackBerry! iPhone 3GS, iPod Touch (3 s iPhone 3GS, iPod Touch (3rd generation), iPad iOS 4.0, or later generation), iPad iOS 4.0, • Download the MyItinerary app by or later searching for “ScholarOne” in the s Most mobile devices using Android App Store directly from your mobile 2.2 or later with the default browser device. Or, access the link below or scan the QR code to access the iTunes s BlackBerry Torch or later device Sponsored by: page for the app.
    [Show full text]
  • Materials for Liquid Propulsion Systems
    https://ntrs.nasa.gov/search.jsp?R=20160008869 2019-08-29T17:47:59+00:00Z CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost.
    [Show full text]
  • Los Motores Aeroespaciales, A-Z
    Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 < aeroteca.com > Depósito Legal B 9066-2016 Título: Los Motores Aeroespaciales A-Z. © Parte/Vers: 1/12 Página: 1 Autor: Ricardo Miguel Vidal Edición 2018-V12 = Rev. 01 Los Motores Aeroespaciales, A-Z (The Aerospace En- gines, A-Z) Versión 12 2018 por Ricardo Miguel Vidal * * * -MOTOR: Máquina que transforma en movimiento la energía que recibe. (sea química, eléctrica, vapor...) Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 Este facsímil es < aeroteca.com > Depósito Legal B 9066-2016 ORIGINAL si la Título: Los Motores Aeroespaciales A-Z. © página anterior tiene Parte/Vers: 1/12 Página: 2 el sello con tinta Autor: Ricardo Miguel Vidal VERDE Edición: 2018-V12 = Rev. 01 Presentación de la edición 2018-V12 (Incluye todas las anteriores versiones y sus Apéndices) La edición 2003 era una publicación en partes que se archiva en Binders por el propio lector (2,3,4 anillas, etc), anchos o estrechos y del color que desease durante el acopio parcial de la edición. Se entregaba por grupos de hojas impresas a una cara (edición 2003), a incluir en los Binders (archivadores). Cada hoja era sustituíble en el futuro si aparecía una nueva misma hoja ampliada o corregida. Este sistema de anillas admitia nuevas páginas con información adicional. Una hoja con adhesivos para portada y lomo identifi caba cada volumen provisional. Las tapas defi nitivas fueron metálicas, y se entregaraban con el 4 º volumen. O con la publicación completa desde el año 2005 en adelante. -Las Publicaciones -parcial y completa- están protegidas legalmente y mediante un sello de tinta especial color VERDE se identifi can los originales.
    [Show full text]
  • Dual Thrust Axis Lander (DTAL) Lands Horizontally
    Robust Lunar Exploration Using an Efficient Lunar Lander Derived from Existing Upper Stages AIAA 2009-6566 Bernard F. Kutter 1, Frank Zegler 2, Jon Barr 3, Tim Bulk 4, Brian Pitchford 5 United Launch Alliance Denver, CO Future large scale lunar exploration is impeded by the high cost of accessing the lunar surface. This cost is composed of terrestrial launch costs and the cost of developing and operating efficient lunar landers capable of delivering crew and large payloads to the lunar surface. Developing lunar landers from a platform based upon an operational upper stage minimizes development and recurring costs while increasing crew safety and reliability. The Dual Thrust Axis Lander (DTAL) lands horizontally. It uses an RL10 engine to accomplish the descent deceleration to just above the lunar surface. Final landing is accomplished using thrusters mounted along the DTAL body. This configuration places the crew and payloads safely and conveniently close to the lunar surface. This paper describes DTAL and its benefits in supporting a robust lunar exploration program. Initial DTAL-enabled large robotic missions allow NASA to return to the moon quickly and demonstrate hardware to be used by crews that follow. This same mission design supports placement of large lunar base elements (habitats, power plants, rovers, excavation equipment, etc). As the uncrewed missions are completed, and the system matures, astronauts will then use the same, now proven system to access the lunar surface. The reliable DTAL propulsion stage provides the flexibility to visit destinations other than the moon. DTAL’s mass and thermal efficient design provides the capability to visit NEO’s or possibly even Mars.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • ADVANCED SPACE ENGINE N74-16489 PRELIINABY DESIGN (Rocketdyne) F5,-P HC CSCL 21H $27.25 Unclas G3/28 28289 1
    NASA CR-121236 R-9269 ADVANCED SPACE ENGINE PRELIMINARY DESIGN By A. T. Zachary ROCKETDYNE DIVISION C- ROCKWELL INTERNATIONAL Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA-Lewis Research Center Contract NAS3-16751 (NVSA-CR-121236) ADVANCED SPACE ENGINE N74-16489 PRELIINABY DESIGN (Rocketdyne) f5,-p HC CSCL 21H $27.25 Unclas G3/28 28289 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA CR-121236 4. Title and Subtitle 5. Report Date ADVANCED SPACE ENGINE PRELIMINARY DESIGN October 1973 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. A.T. Zachary R-9269 10. Work Unit No. 9. Performing Organization Name and Address Rocketdyne Division, Rockwell International 11. Contract or Grant No. Canoga Park, California, 91304 NAS3-16751 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Contractor Report National Aeronautics and Space Administration Washington, D.C., 20546 14. Sponsoring Agency Code 15. Supplementary Notes Project Manager, D.D. Scheer, NASA-Lewis Research Center, Cleveland, Ohio 16. Abstract Analysis and design of an optimum LO2/LH2, combustion topping cycle, 88,964 N (20,000-pound) thrust, liquid rocket engine was conducted. The design selected is well suited to high-energy, upper-stage engine applications such as the Space Tug and embodies features directed toward optimization of vehicle performance. A configuration selection was conducted based on prior Air Force Contracts F04611-71-C0039, F04611-71-C-0040, and F04611-67-C-0016,.and additional criteria for optimum stage performance. Following configuration selection, analyses and design of the major components and engine systems were conducted to sufficient depth to provide layout drawings suitable for subsequent detailing.
    [Show full text]
  • Aerojet Marks 70 Years Serving the Warfighter and Powering Exploration
    March 19, 2012 Aerojet Marks 70 Years Serving the Warfighter and Powering Exploration SACRAMENTO, Calif., March 19, 2012 (GLOBE NEWSWIRE) -- Aerojet, a GenCorp (NYSE:GY) company, announced its 70th anniversary today, marking the March 19, 1942 founding of Aerojet Engineering Corporation by world-renowned aerodynamicist Dr. Theodore von Kármán and five California Institute of Technology colleagues. These rocket pioneers leveraged their ingenuity and shared passion for rocketry to create a company that today has powered some of the nation's most critical defense and exploration missions. Launching as a single-product company, Aerojet manufactured critical Jet Assisted Take Off (JATO) propulsion, which led to increased allied pilot safety by enabling heavily laden aircraft to take off from short runways and carrier decks. Following the allied forces' victory in WWII, Aerojet's production efforts turned to the development of solid rocket propellant motors for the Intercontinental Ballistic Missile (ICBM) Minuteman, as well as solid rocket motors for the two-stage submarine- launched ballistic missile, Polaris. Aerojet also began work on the Titan program. The company ultimately spent the next 50 years producing liquid rocket engines for the entire Titan launcher family: Titan I, Titan II, Titan III and Titan IV. Space Exploration and Defending Freedom With the launch of the space race in the 1960s, Aerojet's propulsion expertise powered the nation's early exploration accomplishments. In 1966, three of every four rockets launched from Cape Canaveral, Fla. were powered by Aerojet propulsion systems. Following the two-man missions of Gemini, Aerojet's Service Propulsion System placed Apollo astronauts in orbit around the moon and brought them home again.
    [Show full text]