Capillary Tube Thermal Mass Flow Meters & Controllers: a User's Guide

Total Page:16

File Type:pdf, Size:1020Kb

Capillary Tube Thermal Mass Flow Meters & Controllers: a User's Guide Capillary Tube Thermal Mass Flow Meters & Controllers A User’s Guide By John G. Olin, Ph.D., Sierra Instruments, Inc. / 9.24.13 A SIERRA WHITEPAPER www.sierrainstruments.com NORTH AMERICA 5 Harris Court, Building L / Monterey, CA 93940 / USA 800.866.0200 / 831.373.0200 / fx 831.373.4402 EUROPE Bijlmansweid2 / 1934RE Egmond aan den Hoef The Netherlands +31 72 5071400 / fx +31 72 5071401 ASIA-PACIFIC Second Floor Building 5 / Senpu Industrial Park 25 Hangdu Road Hangtou Town / Pu Dong New District Shanghai, P.R. China Post Code 201316 +8621 5879 8521/22 / fx +8621 5879 8586 © 2013 Sierra Instruments, Inc. / All rights reserved. A USER’S GUIDE TO CAPILLARY TUBE THERMAL MASS FLOW METERS AND CONTROLLERS John G. Olin(1) Abstract Capillary tube thermal mass flow meters directly measure the mass flow rate of clean gases and gas mixtures in lower flow ranges. A capillary tube thermal mass flow controller adds an integrally mounted flow control valve to the flow body of the mass flow meter and both monitors the mass flow rate and controls it to be equal to a set-point value selected by the user. This paper describes capillary tube mass flow meters and controllers for use in general purpose industrial and laboratory applications and in the fabrication of semiconductor devices. It provides a detailed description of the major components-- -flow body, flow conditioner, bypass, capillary sensor tube, control valve, and electronics. Flow ranges and specifications for which this technology is best suited are presented. The paper explains the principle of operation; describes gas conversion factors that provide Fig. 1 Classifications of mass flow meters multi-gas capability in a single instrument; lists best practices for users, including the selection, installation, and operation of the instruments; and concludes with a discussion of preferred 1 Introduction methods of flow calibration. Capillary tube thermal mass flow meters and Keywords: flow meter, gas flow meter, mass controllers were first commercialized in the flow meter, mass flow controller, thermal mass early 1960’s. The space industry was one of the flow meter, capillary tube thermal mass flow first users, but before long the industry that meter, capillary tube thermal mass flow fabricated solid state semiconductor devices controller recognized their usefulness. When integrated circuit semiconductor devices began their long and continuing period of exceptional growth, the market for capillary tube thermal mass flow controllers grew with it. In the 1970’s and 1980’s, general industry recognized the advantages of using capillary tube mass flow meters and controllers in a broad range of 1 of 28 applications, and several new companies were because it eliminates errors associated with formed to serve this growing market. The secondary measurements and requires only one advantages of accuracy, compactness, reliability, penetration of the process line. and cost-effectiveness continue to make capillary tube thermal instruments the choice for Thermal mass flow meters are of two types--- monitoring and controlling smaller mass flow thermal dispersion mass flow meters and rates of clean gases in general industry and in capillary tube thermal mass flow meters. the fabrication of semiconductor devices. Thermal dispersion instruments are used for general industrial gas flow applications in pipes The primary virtue, and the source of and ducts. Capillary tube instruments are used their prominence, is the fact that capillary for lower flows of clean gases in a wide range of tube thermal instruments directly measure mass process and laboratory applications. Both types flow rate, as opposed to, for example, of instruments measure mass flow rate via the volumetric flow rate. This is important because heat carried away by the gas flowing over the most industries need to measure and control surface of a heated element. Beyond that, their the flow of the molecules, i.e., the mass, of principles of operation are quite different. the gas entering their process. In the case of the thermal dispersion, or Fig. 1 shows the classifications of mass flow immersible, type of mass flow meter, heat is meters---a “tree” with “mass flow meters” as its transferred to the boundary layer of the gas root and capillary tube thermal mass flow meters flowing over a cylindrical heated sensor and controllers as its top branches. immersed in the main flow stream. The heat carried away by the gas provides the As shown in Fig. 1, two kinds of flow meters measurement of mass flow rate. Thermal directly measure the mass flow rate of fluids--- dispersion mass flow meters have two major Coriolis mass flow meters and thermal mass configurations---in-line and insertion. Their flow meters. Coriolis mass flow meters directly applications, description, principle of operation, measure the mass flow rate of most fluids, both and usage are discussed in references [1] to [3]. liquids and gases, and do not require knowledge of the identity, or composition, of the fluid. In the case of the capillary tube type of Thermal mass flow meters directly measure the thermal mass flow meter (hereinafter, “MFM”) mass flow rate of gases, and do require described in this paper, the flow enters the flow knowledge of its composition. Coriolis mass body and splits into two internal flow paths. One flow meters have high accuracy, high pressure path flows through a heated capillary sensor tube drop, work best with liquids, and are relatively that has a small diameter and relatively long expensive. Thermal mass flow meters have length. The second parallel path inside the flow medium to high accuracy, low pressure drops, body flows through a bypass consisting of a work best with gases, and are relatively laminar flow element. This creates a pressure inexpensive. drop that forces a small fraction of the total mass flow rate through the adjacent capillary sensor Both Coriolis and thermal technologies tube. The ratio of the flows through the bypass “directly measure” mass flow rate because they and the sensor tube is a constant. The capillary require no secondary measurements to deliver sensor tube measures its internal mass flow rate their mass flow rate output. Several kinds of by means of the heat capacity of the gas that flow meters directly measure volumetric flow carries heat from an upstream resistance- rate, such as ultrasonic, vortex, turbine, positive temperature-detector winding to a downstream displacement, and differential pressure winding, both on outside of the sensor tube. The producing devices. To deliver a mass flow rate difference in the electrical resistances of the two output, they must become multivariable flow windings provides the measurement of the mass meters that require the secondary measurements flow rate through the sensor tube, and thereby of fluid temperature and pressure. Direct the total mass flow rate in the flow conduit. measurement of mass flow rate is preferred 2 of 28 A capillary tube thermal mass flow controller (hereinafter, “MFC”) adds an integrally mounted flow control valve to the flow body of the MFM and both monitors the mass flow rate and controls it to be equal to a set-point value selected by the user either remotely or on the MFC itself. More MFCs are manufactured than MFMs because most users want to control the mass flow rate of the gas in their process rather than just monitor it. Capillary tube thermal MFCs offer a cost-effective solution for controlling the flow of gases because they are compact, require only one penetration of the process line, and have a built-in optimized control system. This paper applies to gas flow, and not liquid flow, because gas flow constitutes the vast majority of the applications for capillary tube thermal MFMs and MFCs. This is true because the measurement sensitivity for gases is much greater than for liquids. Nevertheless, this technology has been used to measure and control very low flow rates of liquids (less than approximately 1000 grams per hour) in Fig. 2 Typical general purpose mass flow specialized applications in the semiconductor, controller chemical, food, and pharmaceutical industries, as well as in analytical laboratories. Many of the (2) Semiconductor manufacturing and other principles of operation stated here apply to some high purity vacuum processes liquids. For the remainder of this paper the fluid is a gas. Both of these applications are shown in the mass flow meter tree of Fig. 1. Semiconductor It is common practice to express the mass flow applications almost always use MFCs, and not rate measured by capillary tube thermal MFMs MFMs. Semiconductor MFCs are covered in and MFCs in units of slpm (standard liters per considerable detail in a series of standards minute) and, for low flows, in units of sccm published by the Semiconductor Equipment and (standard cubic centimeters per minute). The Materials International [4]. This paper focuses on units slpm and sccm may appear to be general purpose MFMs and MFCs designed to volumetric flow rate units, but indeed they are meet the needs of general industry and mass flow rate units, as described in para. 6. laboratories. Here, the terms “MFM” and “MFC” apply generically to both kinds of capillary tube thermal mass flow meters and controllers, and the 2 General Purpose and term “instruments” applies collectively to both. In Semiconductor Applications cases where the two major applications must be distinguished, the prefixes “general purpose” and Capillary tube thermal mass flow meters and “semiconductor” are used. controllers have two broad fields of application: Fig. 2 shows a typical general purpose capillary (1) General purpose industrial and laboratory tube thermal MFC that operates in the medium applications flow range of approximately 50 to 300 slpm. 3 of 28 In serving these applications, general purpose MFMs and MFCs monitor and control the flow of clean gases and gas mixtures, such as: air, nitrogen, oxygen, hydrogen, argon, carbon dioxide, carbon monoxide, methane, helium, nitrous oxide, some semiconductor fabrication gases and gas mixtures.
Recommended publications
  • IRITS-0313-040 EUEN 0518 DEC Refrigerated Dryer Datasheet.Indd
    Dec High-Efficiency Cycling Dryers 42-5,400 m3/hr Achieve maximum energy savings, while ensuring a continuous supply of dry high-quality air. increase reliability. Features such as dryer self-regulation and plug-and-play installation make start-up convenient, while readily-available parts make ongoing maintenance simple and easy. Advanced Environmental Sustainability By shutting off the compressor during low loads, Dec dryers dramatically reduce energy waste. Dec dryers use R134a and R407c refrigerants that are environmentally-friendly with low global warming potential to help reduce greenhouse gas emissions. High-quality components provide longer lasting dryers that require fewer replacement parts, minimising environmental impact. Higher Efficiency, Lower Cost The high-efficiency design and construction of Ingersoll Energy Savings by Technology Rand Dec cycling dryers helps you achieve better 4.0 performance, while reducing energy consumption. The Dec Dryer 3.5 patented high-efficiency heat exchanger, combined with Non-Cycling 3.0 Dryers a thermal mass circuit, helps save energy at any load. The kW 2.5 Variable Speed highly efficient refrigerant compressor is automatically Drive Dryers 2.0 deactivated to save energy when not needed. 1.5 Energy Savings Consumption 1.0 Reliability and Simplicity through Experience 0.5 Utilising extensive dryer design experience, the Ingersoll Rand 0.0 Dec dryer includes features like microprocessor control 02025507580100 and a heavy-duty electronic no-loss (ENL) drain that % Load Efficiency Is the Bottom Line The Dec dryer’s efficient design and construction are evident in terms of superior air quality and throughput with a lower Low Operating Cost cost of operation.
    [Show full text]
  • Thermal Mass
    Thermal Mass • What is Thermal Mass? • Types of Thermal Mass • Historical Applications • Thermal Properties of Materials • Analyzing Heat/Cool Storage • Strategies • Other Factors • Computer Analysis • Bibliography Thermal Mass • Thermal mass refers to materials have the capacity to store thermal energy for extended periods. • Thermal mass can be used effectively to absorb daytime heat gains (reducing cooling load) and release the heat during the night (reducing heat load). Types of Thermal Mass • Traditional types of thermal mass include water, rock, earth, brick, concrete, fibrous cement, caliche, and ceramic tile. • Phase change materials store energy while maintaining constant temperatures, using chemical bonds to store & release latent heat. PCM’s include solid-liquid Glauber’s salt, paraffin wax, and the newer solid-solid linear crystalline alkyl hydrocarbons (K-18: 77oF phase transformation temperature). PCM’s can store five to fourteen times more heat per unit volume than traditional materials. (source: US Department of Energy). Historical Applications • The use of thermal mass in shelter dates back to the dawn of humans, and until recently has been the prevailing strategy for building climate control in hot regions. Egyptian mud-brick storage rooms (3200 years old). The lime-pozzolana (concrete) Roman Pantheon Today, passive techniques such as thermal mass are ironically considered “alternative” methods to mechanical heating and cooling, yet the appropriate use of thermal mass offers an efficient integration of structure and thermal services. Thermal Properties of Materials The basic properties that indicate the thermal behavior of materials are: density (p), specific heat (cm), and conductivity (k). The specific heat for most masonry materials is similar (about 0.2-0.25Wh/kgC).
    [Show full text]
  • A Simplified Ground Thermal Response Model for Analyzing
    1 A Simplified Ground Thermal Response 2 Model for Analyzing Solar-Assisted Ground 3 Source Heat Pump Systems 4 5 6 7 8 9 10 Jamie P. Fine, Hiep V. Nguyen, Jacob Friedman, Wey H. Leong, and Seth B. Dworkin* 11 12 Department of Mechanical and Industrial Engineering 13 Ryerson University 14 350 Victoria Street, Toronto, Canada 15 (*Corresponding author: [email protected]) 16 17 Abstract 18 19 Ground source heat pump systems that are installed in areas with heating or cooling dominant 20 seasons, or in buildings with utilization characteristics that lead to a disparity in demand, often 21 encounter challenges related to ground thermal imbalance. This imbalance can lead to long-term 22 ground temperature changes and may cause premature system failure. This paper focuses on 23 combining a ground source heat pump system with a solar thermal array, with the goal of 24 eliminating the effect of ground thermal imbalance, and minimizing system lifetime cost. A 25 thermal mass ground heat transfer model is combined with a time-stepping model to analyze the 26 system for a variety of solar array sizes. The details associated with this modelling technique are 27 presented, and case studies are provided to illustrate the results of the calculations for three 28 different buildings. It is shown that increasing the solar array size can offset ground thermal 29 imbalances, but increasing the array size also results in a larger initial system cost. An economic 30 analysis is then carried out to determine the system lifetime cost as a function of this solar array 31 size, and an optimal array size from an economic perspective was found.
    [Show full text]
  • A Comprehensive Review of Thermal Energy Storage
    sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources.
    [Show full text]
  • Automatic Flow Control Valves 6
    Automatic Flow Form No.: F143.6 Control Valves Date: 8.06 Guide Specifications Supersedes: F143.5 5.99 Guide Specifications A. Manufacturers: 5. For 2 1/2” and larger flanged connections: 1. Flow Design, Inc., Autoflow or approved equal. Ductile-iron body suitable for mounting wafer Models YR, AC, MC, WG, WS, WB, WR style between standard 150# or 300# flanges. or WT. The long flange bolts and nuts shall be provided with each control valve. Flow Design Model WS B. Design: or equal. 1. The GPM for the automatic flow control valves 6. All valves shall be factory leak tested at 100 psi shall be factory set and shall automatically limit air. the rate of flow to within 5% of the specified D. Minimum ratings: GPM over at least 95 percent of the control 1. 1/2” through 2” pipe size: 400 PSIG at 250°F range. 2. 2 1/2” through 14” pipe size: 600 PSIG at 250°F 2. For 1/2” - 2“, the flow cartridge shall be 3. 16” through 30” pipe size: 250 PSIG at 250°F removable from the Y- body housing without the use of special tools to provide access for E. Flow Verification (choose one): regulator change-out, inspection and cleaning 1. The differential pressure across the Automatic without breaking the main piping. (Access shall Flow Control Valve shall be measured for flow be similar to that provided for removal of a verification and to determine the amount of Y-strainer screen). system over heading or under pumping. 3. PUMP HEAD REQUIREMENT: 2.
    [Show full text]
  • Cycling Refrigerated Air Dryers — Are Savings Significant?
    | 11/11 SUSTAINABLE MANUFACTURING FEATURES CYCLING REFRIGERATED AIR DRYERS — ARE SAVINGS SIGNIFICANT? BY TIMOTHY J. FOX AND RON MARSHALL FOR THE COMPRESSED AIR CHALLENGE® One of the many tasks in assessing a compressed air system supply refrigerated dryers that have different energy implications, especially side is to analyze the air treatment system for appropriateness and when the dryers are subject to partial heat and moisture loading. In efficiency. Most compressed air systems have one or more air dryers order to make a good choice in terms of energy efficiency, the purchaser in place to remove the water vapor contained in the compressed air should take care in understanding the operating characteristics of the produced by the system air compressors. If there is no air dryer, the different refrigerated dryer options available. normally hot saturated air produced by the air compressors will cool Air compressors consume the majority of the power required by a in downstream system components, and condensed water will form in compressed air system; a well running system requiring between 18 and pressurized system pipework. This water may contaminate downstream 22 kW of energy input per 100 scfm of air produced at a compressor air-powered tools and production machinery with rust, oil and pipe discharge pressure of about 100 psig (kW/100 cfm is called specific debris. Refrigerated style dryers are typically used in industrial plants power). Fully loaded refrigerated air dryer specific power levels range to process general industrial compressed air that would be use by tools between 0.6 and 0.8 kW per 100 scfm, or about 3 to 4% of the total and pneumatic machinery.
    [Show full text]
  • Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps
    Article Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps Pavel Neuberger * and Radomír Adamovský Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague-Suchdol, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-224-383-179 Received: 12 April 2019; Accepted: 13 May 2019; Published: 15 May 2019 Abstract: The efficiency of a heat pump energy system is significantly influenced by its low- temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low- temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE.
    [Show full text]
  • Hydraulic Valve Remote Control System
    HYDRAULIC VALVE REMOTE CONTROL SYSTEM OVERVIEW Nordic Flow Control’s compact design for our Hydraulic Valve Remote Control Systems does not compromise on power. Our systems operate at a higher torque level even with our smaller actuators. Submerged applications are available, and maintenance is possible even during operation. By having a hand pump in a deck box with solenoid valves, manual operations are now possible. Our Hydraulic Valve Remote Control Systems are tried and tested in the harshest conditions. The system consists of the hydraulic actuator, a power unit, solenoid valve cabinet, and the control station with operating system. Our actuators and control systems are able to match and operate valves with no limitations. BENEFITS • Able to operate bigger size valves with smaller actuators • Able to use for submerged applications • Cost efficient • Reliable • Able to operate at hazardous areas • Simplicity of design and control Nordic Flow Control Valve Remote Control Systems 1 COMPONENTS ACTUATORS Nordic Flow Control’s actuators are manufactured using sophisticated machinery in our own production plant. They convert hydraulic energy directly into a mechanical rotating movement by using the rack and pinion principle, elimi- nating cost from intensive servicing, maintenance and the sensitivity of transmission elements. Our actuators are created for durability, performance and cost effectiveness. Our new NRA series actuators are now more compact and provide higher torque at even smaller sizes. They have a longer life span, with higher efficiency. Polymer bearings for smaller actuators and ball bearings for bigger actuators are used to reduce friction between the parts. Mounting is according to ISO5211 standards, but can be customised to meet other requirements.
    [Show full text]
  • Thermal Autonomy As Metric and Design Process
    Thermal Autonomy as Metric and Design Process Brendon Levitt. Author Loisos + Ubbelohde, Alameda, California California College of the Arts, San Francisco M. Susan Ubbelohde. Co-Author Loisos + Ubbelohde, Alameda, California University of California, Berkeley George Loisos. Co-Author Loisos + Ubbelohde, Alameda, California Nathan Brown. Co-Author Loisos + Ubbelohde, Alameda, California California College of the Arts, San Francisco ABSTRACT: Metrics for quantifying thermal comfort and energy consumption focus on the role of mechanical systems, not architecture. This paper proposes a new metric, "Thermal Au- tonomy," that links occupant comfort to climate, building fabric, and building operation. Ther- mal Autonomy measures how much of the available ambient energy resources a building can harness rather than how much fuel heating and cooling systems will consume. The change in mental framework can inform a change in process. This paper illustrates how Thermal Auton- omy analysis gives rich visual feedback as to the diurnal and seasonal patterns of thermal com- fort that an architectural proposition is expected to deliver. Thermal Autonomy has far-reaching utility as a comparative metric for envelope design, identifying mechanical strategies, and mixed-mode operation decisions. Foremost, it is a generative metric to quantify ways that the building filters the ambient environment. The use of Thermal Autonomy is illustrated through parametric building thermal simulation and analysis. INTRODUCTION There is a need for the fundamental re-alignment of how we measure and think about thermal comfort in buildings. Most existing metrics were developed to inform the design of mechanical systems. Occasionally, metrics are proposed that define when people are likely to be comforta- ble without heating or cooling systems, but these metrics are framed to avoid energy use rather than embrace the opportunities of climate.
    [Show full text]
  • Thermal Mass Requirement for Building Envelope in Different Climatic Conditions
    Click here for table of contents Click here to search THERMAL MASS REQUIREMENT FOR BUILDING ENVELOPE IN DIFFERENT CLIMATIC CONDITIONS ANIR KUMAR UPADHYAY Architect / Urban Planner 4/24, Park Street, Kogarah NSW 2217, Australia ABSTRACT This study investigates the thermal mass requirement at three different places: Mackay, Brisbane and Amberley in Queensland, Australia. These places have been selected considering their proximity to the nearby coast. Mackay is situated along the coast, Brisbane is located near the coast and Amberley lies inland. Climate data of these cities were retrieved from Bureau of Meteorology’s data bank and climate analysis tools such as Mahoney tables, Building bioclimatic chart were used to get a clear picture of prevailing climatic conditions. Wind roses for different times in different seasons were prepared to understand the wind direction and speed. This paper concludes that provision of thermal mass in buildings is beneficial in coastal as well as inland locations of Queensland. THERMAL MASS IN BUILDING Thermal mass is a major building element in passive solar building design. Passive solar building design understands the local micro-climate and uses natural energies like sun and wind to maintain thermal comfort in buildings. Thermal mass in building fabric will affect the thermal response and performance of spaces. Incorporating thermal mass in buildings helps to balance fluctuating temperatures across the diurnal cycle. A heavy weight building envelope will respond slowly to heat gains from all types of natural or artificial heating sources like sun or mechanical heating systems. Hence, thermal mass assists in the reduction of energy consumed in heating and cooling.
    [Show full text]
  • IRM-G-8721 Nvcdryerbroch
    Nirvana Cycling Refrigerated Dryers Nirvana Cycling Refrigerated Dryers Reliability Is Our Design Ingersoll Rand's Nirvana Cycling Refrigerated Dryer High Heat Transfer at Work The superior performance of the Nirvana dryer can be attributed to the provides reliability like no other dryer in its class: reliability effective heat transfer capabilities of the exchanger design, utilized that you can count on to protect your air system day in throughout the package for each stage of heat removal. The dryer design includes a pre-cooling system with stainless steel heat exchangers to An innovative corrugated and and day out; reliability built in by design. properly condition the air for drying. A re-heater section of the dryer's folded stainless steel panel is air side also uses these high performance heat exchangers to prepare the stacked inside two stainless steel dried compressed air for re-entry into the air system. This prevents pipe shells, then welded together to form sweating and readies the compressed air for use in process applications. a unitized heat exchanger. This design ensures reliability through the elimination of dissimilar metals or tube in tube chaffing, which is a • common cause for heat exchanger leaks and failures. The Nirvana is a genuine cycling dryer, incorporating innovative features that make it • not only the most reliable, but the most energy efficient, dryer in its class. • The key element central to the Nirvana's 100% stainless steel construction reliability and energy efficiency is its permits optimal heat transfer, distinct, patented heat exchanger design. resulting in a consistent pressure Providing high heat transfer with low dew point.
    [Show full text]
  • Design of Ground Source Heat Pump Systems Thermal Modelling and Evaluation of Boreholes
    THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING Design of ground source heat pump systems Thermal modelling and evaluation of boreholes SAQIB JAVED Building Services Engineering Department of Energy and Environment CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2010 Design of ground source heat pump systems Thermal modelling and evaluation of boreholes Saqib Javed © SAQIB JAVED, 2010 Licentiatuppsats vid Chalmers tekniska högskola Ny serie nr 2706 ISSN 0346-718X Technical report D2010:02 Building Services Engineering Department of Energy and Environment Chalmers University of Technology SE-412 96 GÖTEBORG Sweden Telephone +46 (0)31 772 1000 Printed by Chalmers Reproservice Göteborg 2010 ii Design of ground source heat pump systems Thermal modelling and evaluation of boreholes SAQIB JAVED Building Services Engineering Chalmers University of Technology Abstract Ground source heat pump systems are fast becoming state-of-the-art technology to meet the heating and cooling requirements of the buildings. These systems have high energy efficiency potential which results in environmental and economical advantages. The energy efficiency of the ground source heat pump systems can be further enhanced by optimized design of the borehole system. In this thesis, various aspects of designing a borehole system are studied comprehensively. A detailed literature review, to determine the current status of analytical solutions to model the heat transfer in the borehole system, indicated a shortage of analytical solutions to model the short-term borehole response and the long-term response of the multiple borehole systems. To address the modelling issue of long-term response of multiple boreholes, new methods based on existing analytical solutions are presented.
    [Show full text]