Thermal Autonomy As Metric and Design Process
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IRITS-0313-040 EUEN 0518 DEC Refrigerated Dryer Datasheet.Indd
Dec High-Efficiency Cycling Dryers 42-5,400 m3/hr Achieve maximum energy savings, while ensuring a continuous supply of dry high-quality air. increase reliability. Features such as dryer self-regulation and plug-and-play installation make start-up convenient, while readily-available parts make ongoing maintenance simple and easy. Advanced Environmental Sustainability By shutting off the compressor during low loads, Dec dryers dramatically reduce energy waste. Dec dryers use R134a and R407c refrigerants that are environmentally-friendly with low global warming potential to help reduce greenhouse gas emissions. High-quality components provide longer lasting dryers that require fewer replacement parts, minimising environmental impact. Higher Efficiency, Lower Cost The high-efficiency design and construction of Ingersoll Energy Savings by Technology Rand Dec cycling dryers helps you achieve better 4.0 performance, while reducing energy consumption. The Dec Dryer 3.5 patented high-efficiency heat exchanger, combined with Non-Cycling 3.0 Dryers a thermal mass circuit, helps save energy at any load. The kW 2.5 Variable Speed highly efficient refrigerant compressor is automatically Drive Dryers 2.0 deactivated to save energy when not needed. 1.5 Energy Savings Consumption 1.0 Reliability and Simplicity through Experience 0.5 Utilising extensive dryer design experience, the Ingersoll Rand 0.0 Dec dryer includes features like microprocessor control 02025507580100 and a heavy-duty electronic no-loss (ENL) drain that % Load Efficiency Is the Bottom Line The Dec dryer’s efficient design and construction are evident in terms of superior air quality and throughput with a lower Low Operating Cost cost of operation. -
Thermal Mass
Thermal Mass • What is Thermal Mass? • Types of Thermal Mass • Historical Applications • Thermal Properties of Materials • Analyzing Heat/Cool Storage • Strategies • Other Factors • Computer Analysis • Bibliography Thermal Mass • Thermal mass refers to materials have the capacity to store thermal energy for extended periods. • Thermal mass can be used effectively to absorb daytime heat gains (reducing cooling load) and release the heat during the night (reducing heat load). Types of Thermal Mass • Traditional types of thermal mass include water, rock, earth, brick, concrete, fibrous cement, caliche, and ceramic tile. • Phase change materials store energy while maintaining constant temperatures, using chemical bonds to store & release latent heat. PCM’s include solid-liquid Glauber’s salt, paraffin wax, and the newer solid-solid linear crystalline alkyl hydrocarbons (K-18: 77oF phase transformation temperature). PCM’s can store five to fourteen times more heat per unit volume than traditional materials. (source: US Department of Energy). Historical Applications • The use of thermal mass in shelter dates back to the dawn of humans, and until recently has been the prevailing strategy for building climate control in hot regions. Egyptian mud-brick storage rooms (3200 years old). The lime-pozzolana (concrete) Roman Pantheon Today, passive techniques such as thermal mass are ironically considered “alternative” methods to mechanical heating and cooling, yet the appropriate use of thermal mass offers an efficient integration of structure and thermal services. Thermal Properties of Materials The basic properties that indicate the thermal behavior of materials are: density (p), specific heat (cm), and conductivity (k). The specific heat for most masonry materials is similar (about 0.2-0.25Wh/kgC). -
Energy Efficiency for Sustainable Reuse of Public Heritage Buildings: the Case for Research
O. K. Akande, et al., Int. J. Sus. Dev. Plann. Vol. 9, No. 2 (2014) 237–250 ENERGY EFFICIENCY FOR SUSTAINABLE REUSE OF PUBLIC HERITAGE BUILDINGS: THE CASE FOR RESEARCH O. K. AKANDE, D. ODELEYE & A. CODAY Department of Engineering & the Built Environment, Anglia Ruskin University, Chelmsford, UK. ABSTRACT There is a wide consensus that buildings, as major energy consumers and sources of greenhouse gas emis- sions must play an important role in mitigating climate change. This has led to increasing concern and greater demand to improve energy effi ciency in buildings. Although, there has been increased efforts to reduce energy consumption from existing building stock; the heritage sector still needs to accelerate its efforts to improve energy effi ciency and reduction in greenhouse gas emissions. Presently, much concentration has been on improving the energy effi ciency of heritage buildings in the domestic sector while, the non-domestic sector has only received little attention. In particular, studies focusing on reuse and adaptation of heritage buildings for public use to achieve more effi cient use of energy are urgently required. The main focus of this paper is the need for research into sustainable reuse of public heritage buildings with reference to maximising energy effi ciency in the process of considering their conversion to other uses. The paper presents part of a broader on-going research with the aim to investigate problems associated with maximising energy effi ciency in reuse and conversion of public heritage buildings. It identifi es the ability of heritage buildings to play a role in global reduction of energy use and CO2 emission whilst maintaining its unique characteristics. -
A Simplified Ground Thermal Response Model for Analyzing
1 A Simplified Ground Thermal Response 2 Model for Analyzing Solar-Assisted Ground 3 Source Heat Pump Systems 4 5 6 7 8 9 10 Jamie P. Fine, Hiep V. Nguyen, Jacob Friedman, Wey H. Leong, and Seth B. Dworkin* 11 12 Department of Mechanical and Industrial Engineering 13 Ryerson University 14 350 Victoria Street, Toronto, Canada 15 (*Corresponding author: [email protected]) 16 17 Abstract 18 19 Ground source heat pump systems that are installed in areas with heating or cooling dominant 20 seasons, or in buildings with utilization characteristics that lead to a disparity in demand, often 21 encounter challenges related to ground thermal imbalance. This imbalance can lead to long-term 22 ground temperature changes and may cause premature system failure. This paper focuses on 23 combining a ground source heat pump system with a solar thermal array, with the goal of 24 eliminating the effect of ground thermal imbalance, and minimizing system lifetime cost. A 25 thermal mass ground heat transfer model is combined with a time-stepping model to analyze the 26 system for a variety of solar array sizes. The details associated with this modelling technique are 27 presented, and case studies are provided to illustrate the results of the calculations for three 28 different buildings. It is shown that increasing the solar array size can offset ground thermal 29 imbalances, but increasing the array size also results in a larger initial system cost. An economic 30 analysis is then carried out to determine the system lifetime cost as a function of this solar array 31 size, and an optimal array size from an economic perspective was found. -
A Comprehensive Review of Thermal Energy Storage
sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources. -
Intelligent Buildings and COVID-19 LANDMARK RESEARCH PROJECT
Intelligent Buildings and COVID-19 LANDMARK RESEARCH PROJECT EXECUTIVE SUMMARY AND MODULE 1 CABA AND THE FOLLOWING CABA MEMBERS FUNDED THIS RESEARCH: INTELLIGENT BUILDINGS AND COVID-19 1 Disclaimer Frost & Sullivan has provided the information in this report for informational purposes only. The information and findings have been obtained from sources believed to be reliable; however, Frost & Sullivan does not make any express or implied warranty or representation concerning such information, or claim that its use would not infringe any privately owned rights. Qualitative and quantitative market information is based primarily on interviews and secondary sources, and is subject to fluctuations. Intelligent building technologies, and processes evaluated in the report are representative of the market and not exhaustive. Any reference to a specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply an endorsement, recommendation, or favoring by Frost & Sullivan. Information provided in all segments is based on availability and the willingness of participants to share these within the scope, budget, and allocated time frame of the project. All directional statements about the expected future state of the industry are based on consensus-based industry dialogue with key stakeholders, anticipated trends, and best-effort understanding of the future course of the industry. Frost & Sullivan hereby disclaims liability for any loss or damage caused by errors or omissions in this report. © 2021 by CABA. All rights reserved. No part of this publication may be reproduced or trans- mitted in any form or by any means, electronic or mechanical, including photocopy, record- ing, or any information storage or retrieval system, without permission in writing from the publisher. -
Towards an Energy Autonomous Dwelling Design How to Create a More Constant Energy Supply to Limit Storage Demand
Towards an energy autonomous dwelling design How to create a more constant energy supply to limit storage demand Patricia Knaap Student nr.: 4011015 e-mail: [email protected] Delft University of Technology Faculty of architecture Architectural Engineering – Studio 12 May 2014 ABSTRACT of these sources for generating electricity results in This paper is a summary of the research that has heavy pollution. Many new dwellings are all- been conducted on energy consumption and the electric so that gas is not required anymore for possibilities to produce the electricity from heating and cooking, but this results in a higher renewable sources on a small scale in such a way electricity demand. that the dependency of the grid or electricity Although renewable energy sources can provide a storage demand is reduced. significant amount of electricity in a much more It shortly describes the current situation of energy sustainable way, the largest part of electricity still consumption, the energy demand of a Dutch free comes from natural resources. A reason why standing dwelling and how this demand can be renewable energy is not used very much yet is reduced by smart architectural design choices. because there is not a continuous production. The main focus in this paper is how electricity can Where natural resources are available at any be produced by a dwelling by using renewable time, the availability of renewable energy sources resources and how this can be done as efficient is variable and therefore it results in peak as possible to limit the need for electricity storage. productions of electricity. -
CX-023545: South El Monte Autonomous Building Controls Retrofit
4/14/2021 U.S. DOE: Office of Energy Efficiency and Renewable Energy - Environmental Questionnaire RECIPIENT: City of South El Monte STATE: CA PROJECT South El Monte Autonomous Building Controls Retrofit TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-0002324 DE-EE0009466 GFO-0009466-001 GO9466 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Policy 451.1), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, site visits, and audits), data Information analysis (including, but not limited to, computer modeling), document preparation (including, but not limited to, gathering, conceptual design, feasibility studies, and analytical energy supply and demand studies), and information analysis, and dissemination (including, but not limited to, document publication and distribution, and classroom training and dissemination informational programs), but not including site characterization or environmental monitoring. (See also B3.1 of appendix B to this subpart.) B5.1 Actions (a) Actions to conserve energy or water, demonstrate potential energy or water conservation, and promote to conserve energy efficiency that would not have the potential to cause significant changes in the indoor or outdoor energy or concentrations of potentially harmful substances. These actions may involve financial -
PWM Control of a Cooling Tower in a Thermally Homeostatic Building
American Journal of Mechanical Engineering, 2015, Vol. 3, No. 5, 142-146 Available online at http://pubs.sciepub.com/ajme/3/5/1 © Science and Education Publishing DOI:10.12691/ajme-3-5-1 PWM Control of a Cooling Tower in a Thermally Homeostatic Building Peizheng Ma1,*, Lin-Shu Wang1, Nianhua Guo2 1Department of Mechanical Engineering, Stony Brook University, Stony Brook, United States 2Department of Asian and Asian American Studies, Stony Brook University, Stony Brook, United States *Corresponding author: [email protected] Received August 20, 2015; Revised August 30, 2015; Accepted September 02, 2015 Abstract Thermal Homeostasis in Buildings (THiB) is a new concept of building conditioning. Since summer cooling is the more challenging of building conditioning, several earlier papers focused on the study of natural summer cooling by using cooling tower (CT). The goal was to show the possibility and conditions of natural cooling, i.e., under what extreme day by day conditions that it is still possible for natural cooling to keep indoor temperature from exceeding a given maximum value: since no consideration was given to limiting indoor temperature above a minimum, in fact CT overcooling would be the problem for most part of the summer. This paper presents a fuller consideration of continual operation of a CT throughout the whole summer with pulse-width modulation (PWM) control of the tower operation. The goal here is to find to what extent the indoor temperature can be kept within the comfort zone. To put it another way, determine whether hours or percentile of hours out of total annual hours that the operative temperatures are out of the comfort zone are acceptable or not in a small sample of cities. -
Cycling Refrigerated Air Dryers — Are Savings Significant?
| 11/11 SUSTAINABLE MANUFACTURING FEATURES CYCLING REFRIGERATED AIR DRYERS — ARE SAVINGS SIGNIFICANT? BY TIMOTHY J. FOX AND RON MARSHALL FOR THE COMPRESSED AIR CHALLENGE® One of the many tasks in assessing a compressed air system supply refrigerated dryers that have different energy implications, especially side is to analyze the air treatment system for appropriateness and when the dryers are subject to partial heat and moisture loading. In efficiency. Most compressed air systems have one or more air dryers order to make a good choice in terms of energy efficiency, the purchaser in place to remove the water vapor contained in the compressed air should take care in understanding the operating characteristics of the produced by the system air compressors. If there is no air dryer, the different refrigerated dryer options available. normally hot saturated air produced by the air compressors will cool Air compressors consume the majority of the power required by a in downstream system components, and condensed water will form in compressed air system; a well running system requiring between 18 and pressurized system pipework. This water may contaminate downstream 22 kW of energy input per 100 scfm of air produced at a compressor air-powered tools and production machinery with rust, oil and pipe discharge pressure of about 100 psig (kW/100 cfm is called specific debris. Refrigerated style dryers are typically used in industrial plants power). Fully loaded refrigerated air dryer specific power levels range to process general industrial compressed air that would be use by tools between 0.6 and 0.8 kW per 100 scfm, or about 3 to 4% of the total and pneumatic machinery. -
Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps
Article Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps Pavel Neuberger * and Radomír Adamovský Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague-Suchdol, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-224-383-179 Received: 12 April 2019; Accepted: 13 May 2019; Published: 15 May 2019 Abstract: The efficiency of a heat pump energy system is significantly influenced by its low- temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low- temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. -
Building Cooling with a Cooling Tower
SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Thermal Homeostasis in Buildings (THiB): Radiant conditioning of hydronically activated buildings with large fenestration and adequate thermal mass using natural energy for thermal comfort A Dissertation Presented by Peizheng Ma to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mechanical Engineering (Thermal Sciences and Fluid Mechanics) Stony Brook University May 2013 Copyright by Peizheng Ma 2013 Stony Brook University The Graduate School Peizheng Ma We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Lin-Shu Wang – Dissertation Advisor Associate Professor, Department of Mechanical Engineering John M. Kincaid – Chairperson of Defense Professor, Department of Mechanical Engineering Jon P. Longtin Professor, Department of Mechanical Engineering David J. Hwang Assistant Professor, Department of Mechanical Engineering Thomas A. Butcher – Outside Member Professor, Brookhaven National Laboratory This dissertation is accepted by the Graduate School Charles Taber Interim Dean of the Graduate School ii Abstract of the Dissertation Thermal Homeostasis in Buildings (THiB): Radiant conditioning of hydronically activated buildings with large fenestration and adequate thermal mass using natural energy for thermal comfort by Peizheng Ma Doctor of Philosophy in Mechanical Engineering (Thermal Sciences and Fluid Mechanics) Stony Brook University 2013 “Living” buildings, like living bodies, seek to maintain stable internal environments while the external surroundings keep on changing. In biology, the “stable internal environment” is called homeostasis.