This article has been published in a revised form in Robotica [https://www.doi.org/10.1017/S0263574721000321]. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © Cambridge University Press. An Inchworm-Inspired Motion Strategy for Robotic Swarms Kasra Eshaghi*ψ, Zendai Kashinoψ, Hyun Joong Yoonϕ, Goldie Nejatψ, Beno Benhabibψ ψ Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON, M5S 3G8, Canada. Φ School of Mechanical and Automotive Engineering, Daegu Catholic University, Hayang, Gyeongsan, Gyeongbuk 712-702, Republic of Korea E-mails:
[email protected],
[email protected],
[email protected],
[email protected],
[email protected] (Accepted __, First published online: __) SUMMARY Effective motion planning and localization are necessary tasks for swarm robotic systems to maintain a desired formation while maneuvering. Herein, we present an inchworm-inspired strategy that addresses both these tasks concurrently by using anchor robots. The proposed strategy is novel as, by dynamically and optimally selecting the anchor robots, it allows the swarm to maximize its localization performance while also considering secondary objectives, such as the swarm’s speed. A complementary novel method for swarm localization, that fuses inter-robot proximity measurements and motion commands, is also presented. Numerous simulated and physical experimental examples are included to illustrate