Electronics Industry

Total Page:16

File Type:pdf, Size:1020Kb

Electronics Industry REDEFINING BOUNDARIES Insights from the Global C-suite Study Electronics Industry We surveyed 213 business leaders from the Electronics industry for our latest C-suite Study. So how do they differ from CxOs in other sectors? Convergence and competition Electronics CxOs overwhelmingly agree that industry convergence is the Figure 1. Electronics CxOs are particularly fearful top trend reshaping the business landscape (79 percent versus 66 percent of a land grab of our total sample). They’re excited by the new opportunities for growth this More competition expected from other industries offers, but they’re even more nervous than other CxOs about the prospect Global of outsiders invading their patch (see Figure 1). 54% 65% Electronics 1 IBM Institute for Business Value REDEFINING BOUNDARIES | Insights from the Global C-suite Study Electronics – Industry Point of View A different take on key techs Figure 2. Electronics CxOs expect technology Predictably, perhaps, Electronics CxOs say technology is by far the biggest to have a huge impact external force influencing their organizations, although market factors are another major pressure (see Figure 2). But whereas most CxOs are focusing Technology factors on cloud and mobile, Electronics CxOs are more bullish about the Internet 72% of Things. They also have much higher hopes of advanced manufacturing 90% technologies and new energy sources and solutions than their peers in Market factors other industries (see Figure 3). 71% 75% Figure 3. Electronics CxOs are really bullish about the Internet of Things Regulatory concerns 55% 19% Macro-economic factors 51% 56% People skills 48% 53% 63% 61% 57% 37% 28% 23% 12% 10% Global 62% 52% 68% 21% 45% 31% 6% 8% Electronics Cloud Mobile Internet of Cognitive Advanced New energy Bio- Man- computing solutions Things (IoT) computing manufac- sources and engineering machine and turing solutions hybrids services technologies 2 IBM Institute for Business Value REDEFINING BOUNDARIES | Insights from the Global C-suite Study Electronics – Industry Point of View Major overhaul Figure 4. Electronics CxOs plan to review core Electronics CxOs – like other CxOs – recognize they’ll need to reassess business elements the core parts of their businesses in light of the technological progress they envisage. Their primary concern is overhauling their product/service Product/service portfolio portfolios, but they’re also much more switched on to the potential for 73% new revenue models than CxOs in other sectors (see Figure 4). 83% That’s often a winning formula. We identified a small group of highly Operating model 68% successful enterprises in our global sample. Torchbearers – as we call 69% them – likewise invest a lot of effort in developing new revenue models. Partnerships 61% Disrupting the disruptors 69% In fact, Electronics CxOs resemble Torchbearers in a number of ways. Delivery channels Among other things, Torchbearers are especially attuned to the risk of 60% competition from adjacent industries, better at listening to customers to 60% pick up on new trends and more proactive about exploring new markets. Revenue model 57% 72% Customer types or segments 52% 58% Global Electronics 3 IBM Institute for Business Value REDEFINING BOUNDARIES | Insights from the Global C-suite Study Electronics – Industry Point of View Electronics CxOs also excel on all these counts. Indeed, they pay even closer attention to what their customers say, and they’re even more likely to be focusing on new markets (see Figure 5). So, in some respects, they’re even better prepared than Torchbearers to take on digital invaders with different business models and disruptive new competitors from adjacent industries. Figure 5. Electronics CxOs are well placed to take on disrupters 81% % % Global Torchbearers 71% 18more 17more Electronics 69% © Copyright IBM Corporation 2016 Produced in the United States of America 60% Customer feedback Greater focus on new markets IBM, the IBM logo, ibm.com and IBM Global Business Services are trademarks of International But there’s one area where Electronics CxOs lag behind these exemplars. Business Machines Corp., registered in many jurisdictions worldwide. Other product and service Eighty percent of Torchbearers aim to reach the market first when they’re names might be trademarks of IBM or other launching new business models or new offerings, whereas only 60 percent companies. A current list of IBM trademarks is of Electronics CxOs aspire to be market pioneers. available on the web at “Copyright and trademark information” at ibm.com/legal/copytrade.shtml. In an era of disruptive innovation and intensifying competition, it’s vital to be first or the very best. Coming second or third with something that’s only marginally better than rival products and services simply isn’t good IBM Global Business Services Route 100 enough when the very boundaries of business are being redefined. Somers, NY 10589 U.S.A. You can see the various installments of our latest Global C-suite Study 4 at ibm.com/csuitestudy IBM Institute for BusinessGBP03454 Value -USEN-00 .
Recommended publications
  • OBS Transforming CX
    Winning the Global Consumer Electronics Industry A checklist for global, consistent and secure CX "The Age of Experience will be defined by personalized technology that meets your needs… the devices you use will understand you as an individual, blurring the boundaries between the digital and physical worlds." HS KIM President and CEO of Consumer Electronics Division Samsung Electronics Smartphones, smart TVs, laptops and tablets, The global electrical appliances, wearable devices – the US$1 trillion consumer electronics industry permeates every aspect consumer of our lives. It is a proof of the incredible pace of Global consumer electronics innovation around us. electronics market The intense competition especially from many of the size in 2019 industry industry’s Asian leaders such as Samsung, Huawei, Sony, Xiaomi and LG, renders differentiation around product and pricing difficult. COVID-19 has accelerated competition as consumer behaviours shift from purchasing and in-person browsing to their digital equivalents. Companies are looking to create unique personalized Key trends: experiences that optimize every stage of the customer journey across each interaction, be it in-store, or via a Increased demand in website, a mobile app, social media, smartphones, or the emerging markets e-mail, to deliver the right experiences at the right Growing dominance time. Done well, enriched customer experiences will enable businesses in the consumer electronics of Asian companies industry to build customer loyalty in driving Convergence of sustainable competitive advantage in the long-term. technologies, devices and industries ¹ Consumer Electronics Market Size, Global Market Insights Key trends shaping the future Localization drives conversions As consumer electronics giants such as Xiaomi, Huawei, and Samsung compete for market shares in new geographies, a nuanced approach is crucial for building a strong brand presence across diverse markets.
    [Show full text]
  • The Evolving Electronics Industry Courting the Customer Through Insight and Innovation
    Smarter electronics Point of view The evolving electronics industry Courting the customer through insight and innovation Transistor by transistor, the electronics industry is literally changing the world. Consider this: today’s fastest computer can now achieve 17 quadril- lion calculations per second1, and by 2015 there will be more than seven billion mobile devices in the world consuming and generating massive amounts of data.2 Right now there are more than one billion transistors for each person on the planet.3 With innovations like these, it is no surprise that the electronics industry continues to be a leader in research and development investment across the world.4 However, despite an impressive track record of pioneering technology, today’s electronics industry is in a state of disruption. Product life-cycles are compressing, emphasizing the need to create innovative products and services faster and more cheaply than ever before. Competitive pressures are at an all-time high, with aggressive new entrants vying with a continuing need to contain operational costs. And though profit margins for some electronics segments remain relatively high, most are under heavy margin pressure. Together, these trends are driving electronics companies to find new growth opportunities. Many believe that the best way to do this—perhaps the only way to do it—is to transform their business models by getting closer to their customers. In fact, the 2012 IBM CEO study revealed that 86 percent of global electronics CEOs are implementing extensive changes in their organizations to deepen their understanding of individual customer needs, while enabling faster, more relevant responses to markets and individuals.5 CEOs realize that innovative products and services are only successful when they deliver on customer needs.
    [Show full text]
  • Maximizing Manufacturing Margins with Value Engineering Balancing Cost Reduction, Process Improvement, and Product Value
    Maximizing Manufacturing Margins with Value Engineering Balancing Cost Reduction, Process Improvement, and Product Value Manufacturers large and small all hope to achieve the same thing: manufacture more products, with higher margins. Of course, in order to build a lasting business, you need to keep customers satisfied, meaning the quality of products must remain high when you make moves to reduce costs. The best way to reduce costs and improve processes without diminishing the quality of your product is through a process called Value Engineering. Value Engineering is a process used by companies across the globe to ensure product functionality is maximized while costs are minimized. By incorporating Value Engineering into your product development process, you’ll reduce costs, increase margins, and establish a smarter way to determine which new products justify the investment to bring them to market. FortéOne has been helping middle market companies conduct a value analysis and implement Value Engineering in their organizations for 20 years. By leveraging the experience of our people, who have installed Value Engineering in companies across many industries, we have developed a four-step process for incorporating Value Engineering into middle market organizations that avoids the most common challenges companies face during its implementation. Explained below are the lessons we have learned. What is Value Engineering? Value Engineering starts with product value. Product value is the ratio of product function to product cost (including the purchase of raw materials and packaging, logistics and shipping costs, overhead and manpower, and line efficiency). Product function is the work a product is designed to perform.
    [Show full text]
  • Mining Engineering 1
    Mining Engineering 1 Learn more about the bachelor’s degree in mining engineering (https:// MINING ENGINEERING uaf.edu/academics/programs/bachelors/mining-engineering.php), including an overview of the program, career opportunities and more. B.S. Degree College of Engineering and Mines As the nation’s northernmost accredited mining engineering program, Department of Mining and Geological Engineering (https://cem.uaf.edu/ our mission is to advance and disseminate knowledge for exploration, mingeo/) evaluation, development and efficient production of mineral and energy 907-474-7388 resources with assurance of the health and safety of persons involved and protection of the environment, through creative teaching, research Programs and public service with an emphasis on Alaska, the North and its diverse peoples. Degree • B.S., Mining Engineering (http://catalog.uaf.edu/bachelors/ The mining engineering program emphasizes engineering as it applies bachelors-degree-programs/mining-engineering/bs/) to the exploration and development of mineral resources and the economics of the business of mining. The program offers specializations in exploration, mining or mineral beneficiation. Minor • Minor, Mining Engineering (http://catalog.uaf.edu/bachelors/ Students are prepared for job opportunities with mining and construction bachelors-degree-programs/mining-engineering/minor/) companies, consulting and research firms, equipment manufacturers, investment and commodity firms in the private sector, as well as with state and federal agencies. The mining engineering program educational objectives are to graduate competent engineers who: • apply their engineering skills and knowledge with consideration to health, safety and the environment, • pursue careers in mineral-related industries, • are active among the local and professional mining communities, and • seek professional advancement of mining engineering technology and practices.
    [Show full text]
  • Engineering Merit Badge Workbook This Workbook Can Help You but You Still Need to Read the Merit Badge Pamphlet
    Engineering Merit Badge Workbook This workbook can help you but you still need to read the merit badge pamphlet. This Workbook can help you organize your thoughts as you prepare to meet with your merit badge counselor. You still must satisfy your counselor that you can demonstrate each skill and have learned the information. You should use the work space provided for each requirement to keep track of which requirements have been completed, and to make notes for discussing the item with your counselor, not for providing full and complete answers. If a requirement says that you must take an action using words such as "discuss", "show", "tell", "explain", "demonstrate", "identify", etc, that is what you must do. Merit Badge Counselors may not require the use of this or any similar workbooks. No one may add or subtract from the official requirements found in Scouts BSA Requirements (Pub. 33216 – SKU 653801). The requirements were last issued or revised in 2009 • This workbook was updated in June 2020. Scout’s Name: __________________________________________ Unit: __________________________________________ Counselor’s Name: ____________________ Phone No.: _______________________ Email: _________________________ http://www.USScouts.Org • http://www.MeritBadge.Org Please submit errors, omissions, comments or suggestions about this workbook to: [email protected] Comments or suggestions for changes to the requirements for the merit badge should be sent to: [email protected] ______________________________________________________________________________________________________________________________________________ 1. Select a manufactured item in your home (such as a toy or an appliance) and, under adult supervision and with the approval of your counselor, investigate how and why it works as it does.
    [Show full text]
  • Statement of Qualifications
    ENERY ENINEERIN EPER ENERAION RANMIION IRIION STATEMENT OF QUALIFICATIONS Electric Power Engineers, Inc. www.epeconsulting.com ABO S Electric Power Engineers, Inc. (EPE) Js a full-service power engineering firm. EPE provides a wide range of services to TRULY generation owners & developers, municipalities, electric cooperatives, retail providers, and various government entities, both in the United States and internationally. Our success is defined by our clients who are retained by our POWERFUL ability to deliver continuous excellence. At Electric Power Engineers, Inc., we take pride in the meticulousness of our processes, yet our approach is quite simple, we treat each SOLUTIONS project as our own. E. 1968 0VS GJSTU DMJFOU XBT UIF $JUZ PG $PMMFHF 4UBUJPO XIFSF XF EFTJHOFE BOE DPOTUSVDUFE TFWFSBM TVCTUBUJPOT *U XBTOhU MPOH CFGPSF XF XFSF QSPWJEJOH TPMVUJPOT UP OFJHICPSJOH NVOJDJQBMJUJFT BOE FMFDUSJD DPPQFSBUJWFT BDSPTT 5FYBT 0VS BCJMJUZ UP QFOFUSBUF OFX NBSLFUT JT B TPMJEGPVOEBUJPOUIBUEFGJOFEPVSTVDDFTTGPSUIFNBOZEFDBEFTUPDPNF ENERY ENINEERIN EPER ENERAION RANMIION IRIION COMPANY PROFILE Electric Power Engineers, Inc. Electric Power Engineers, Inc (EPE) is a leading power system engineering consulting firm headquartered in Austin, TX. We are a true pioneer in electricity planning with extensive experience integrating solar plants, wind farms, and other generation resources onto the electric grid. Our company provides clients with unparalleled expertise in electric power system studies, planning, design, and integration in the US and international markets. Since the company’s founding in 1968, we have developed a track record of development and successful integration of more than 26,000 Megawatts of solar, wind, and other renewable energy sources. Our involvement includes the entire spectrum of engineering technical assistance through the whole project cycle, from pre-development through construction & implementation.
    [Show full text]
  • Information Technology and Business Process Redesign
    -^ O n THE NEW INDUSTRIAL ENGINEERING: INFORMATION TECHNOLOGY AND BUSINESS PROCESS REDESIGN Thomas H. Davenport James E. Short CISR WP No. 213 Sloan WP No. 3190-90 Center for Information Systems Research Massachusetts Institute of Technology Sloan School of Management 77 Massachusetts Avenue Cambridge, Massachusetts, 02139-4307 THE NEW INDUSTRIAL ENGINEERING: INFORMATION TECHNOLOGY AND BUSINESS PROCESS REDESIGN Thomas H. Davenport James E. Short June 1990 CISR WP No. 213 Sloan WP No. 3190-90 ®1990 T.H. Davenport, J.E. Short Published in Sloan Management Review, Summer 1990, Vol. 31, No. 4. Center for Information Systems Research ^^** ^=^^RfF§ - DP^/i/gy Sloan School of Management ^Ti /IPf?i *''*'rr r .. Milw.i.l. L T*' Massachusetts Institute of Technology j LIBRARJP.'Bh.^RfES M 7 2000 RECBVED The New Industrial Engineering: Information Technology and Business Process Redesign Thomas H. Davenport James E. Shon Emsi and Young MIT Sloan School of Management Abstract At the turn of the century, Frederick Taylor revolutionized the design and improvement of work with his ideas on work organization, task decomposition and job measurement. Taylor's basic aim was to increase organizational productivity by applying to human labor the same engineering principles that had proven so successful in solving technical problems in the workplace. The same approaches that had transformed mechanical activity could also be used to structure jobs performed by people. Taylor, rising from worker to chief engineer at Midvale Iron Works, came to symbolize the ideas and practical realizations in industry that we now call industrial engineering (EE), or the scientific school of management^ In fact, though work design remains a contemporary IE concern, no subsequent concept or tool has rivaled the power of Taylor's mechanizing vision.
    [Show full text]
  • Modern Challenges in the Electronics Industry
    Volumen 41 • No. 19 • Año 2020 • Art. 19 Recibido: 12/02/20 • Aprobado: 14/05/2020 • Publicado: 28/05/2020 Modern challenges in the electronics industry Desafíos modernos en la industria electrónica GAVLOVSKAYA, Galina V. 1 KHAKIMOV, Azat N.2 Abstract The paper analyzes the challenges and current trends in the global electronic industry, carries out a literature review and highlights the gaps in the study of the features of the development of world radio electronics. The article gives a brief historical review of the electronic industry development, provides a characteristic of the modern world electronics market and considers the most important challenges and current trends in the development of the electronic industry. key words: Electronic industry, radio electronics, digital economy, microelectronics. Resumen El documento analiza los desafíos y las tendencias actuales en la industria electrónica mundial. Lleva a cabo una revisión de la literatura y destaca las lagunas en el estudio de las características del desarrollo de la radio electrónica mundial. El artículo ofrece una breve reseña histórica del desarrollo de la industria electrónica, proporciona una característica del mercado electrónico mundial moderno y considera los desafíos más importantes y las tendencias actuales en el desarrollo de la industria electrónica. Palabras clave: industria electrónica, electrónica de radio, economía digital, microelectrónica. 1. Introduction 1.1. Relevance of the research Electronic industry as a machine-building sector today is one of the state’s competitiveness factors in the global market, an instrument for ensuring the economic development of the state in the conditions of an unstable environment and an engine of economic growth for other sectors of industry.
    [Show full text]
  • Why the Mexican Consumer Electronics Industry Failed
    World Development Vol. 27, No. 8, pp. 1427±1443, 1999 Ó 1999 Elsevier Science Ltd. All rights reserved. Printed in Great Britain www.elsevier.com/locate/worlddev 0305-750X/99/$-see front matter PII: S0305-750X(99)00064-9 Foreign Investment and the Global Geography of Production: Why the Mexican Consumer Electronics Industry Failed NICHOLA LOWE Massachusetts Institute of Technology, Cambridge, USA and MARTIN KENNEY * University of California, Davis, USA Summary. Ð Explanations of industrial development in late-developing countries have become narrowly focused on the capability of governments to promote, pressure, or punish nationally-owned ®rms. Often overlooked is the contribution of ®rms, both national and multinational, in propelling, coordinating, and determining the path and location of such development. This paper examines the conditions that led to the decline of Mexico's consumer electronics industry and presents new evidence to support a more complex account of the role of both industrial and state actors within this process. In contrast to the traditional market- or state-based theories, we argue that the decline of Mexico's consumer electronics industry largely resulted from its foreign investment regime, particularly the timing of investment and the geographical locations of local and foreign manufacturers, and the subsequent depth and quality of the rela- tionships between these ®rms. The dierences between Mexico's regime and that of Taiwan during the same period provide further evidence of the important role that foreign ®rms play in inserting local suppliers into the global production chain. We argue that Mexico's foreign investment regime and the resulting weak local-foreign ties, rather than inadequate state policy, sealed the fate of Mexico's once thriving domestic elec- tronics industry.
    [Show full text]
  • ENGR 100 Introduction to Engineering 3 Units (2 Lecture + 1 Lab) Prerequisite: Trigonometry
    ENGR 100 Introduction to Engineering 3 Units (2 lecture + 1 lab) Prerequisite: Trigonometry Course Description: This course explores the branches of engineering, the functions of an engineer, and the industries in which engineers work. The course explains the engineering education pathways and explores effective strategies for students to reach their full academic potential. The course presents an introduction to the methods and tools of engineering problem solving and design including experimentation, data analysis, computer and communication skills, and the interface of the engineer with society and engineering ethics. A spreadsheet program (Microsoft Excel) and a high-level computer language (MATLAB/FREEMAT) are an integral part of the course. Learning Outcomes: By the end of this course, students should be able to 1. Describe the role of engineers in society and classify the different engineering branches, the functions of an engineer, and industries in which they work. 2. Identify and describe academic pathways to bachelor’s degrees. 3. Develop and apply effective strategies to succeed academically. 4. Explain engineering ethical principles and standards. 5. Demonstrate knowledge of effective practices for writing technical engineering documents and making oral presentations. 6. Analyze engineering problems using the engineering design process. 7. Demonstrate teamwork skills in working on an engineering design team. Resource Links: Course Syllabus: lecture content and course schedule, textbook info, course requirements, etc. Course Documents: Lab handouts, problem sets, content review slides, etc. Lab Overviews: list of lab descriptions and learning objectives Lecture Videos: videos used for Fall 2016 .
    [Show full text]
  • Workloads and Standard Time Norms in Garment Engineering
    Volume 2, Issue 2, Spring 2002 REVISED: July 15, 2002 Workloads and Standard Time Norms in Garment Engineering Zvonko Dragcevic*, Daniela Zavec**, Dubravko Rogale*, Jelka Geršak** *Department of Clothing Technology, Faculty of Textile Technology, University of Zagreb, Croatia **Textile and Garment Manufacture Institute, Faculty of Mechanical Engineering, University of Maribor, Slovenia E-mail: zvonko.dragcevic @zagreb.tekstil.hr ; [email protected] [email protected], [email protected] ABSTRACT Possibilities of new methods for measuring loading and standard time norms are presented, as applied in the field of garment engineering. Measurements described are performed on modern measuring equipment designed to measure and perform computer analysis of temporal values of processing parameters in sewing operation and simultaneously record in two planes using a video system. The measuring system described was used to investigate sewing operation for the front seam on a ladies’ fashion suit, 52 cm long. For the operation investigated, method of work employing the MTM (Methods Time Measurement) system with analysis of basic movements was selected. The MTM system used shows that normal time for the operation in question is around 429.3 TMU (15.5 s). Investigations of workload imposed on the worker according to the OADM method were done simultaneously, and total ergonomic loading coefficient of Ker=0.082 was established, thus determining the time necessary to organise the process of work as 464.5 TMU (16.7 s). Simultaneous measurements of time and dynamic changes of processing parameters, as well as logical sets of movements, are important for defining favourable operation structures, time norms, ergonomically designed systems of work and workplaces in garment engineering, as early as in the phase of designing operations.
    [Show full text]
  • Introduction to Industrial Engineering
    INTRODUCTION TO INDUSTRIAL ENGINEEING Industrial Engineering Definition Industrial Engineers plan, design, implement and manage integrated production and service delivery systems that assure performance, reliability, maintainability, schedule adherence and cost control Development of I. E. from Turner, Mize and Case, “Introduction to Industrial and Systems Engineering” I. E. History from Turner, Mize and Case, “Introduction to Industrial and Systems Engineering” U.S. Engineering Jobs from 2003 BLS % of Eng. Jobs % Growth (2012) • Electrical 19.8% 3-9% • Civil and Environmental 18.6% 3 -9% • Mechanical 14.5% 3-9% • Industrial 13.1% 10-20% •All Others <5.0% IE Prospects • Industrial engineers are expected to have employment growth of 14 percent over the projections decade, faster than the average for all occupations. As firms look for new ways to reduce costs and raise productivity, they increasingly will turn to industrial engineers to develop more efficient processes and reduce costs, delays, and waste. This focus should lead to job growth for these engineers, even in some manufacturing industries with declining employment overall. Because their work is similar to that done in management occupations, many industrial engineers leave the occupation to become managers. Numerous openings will be created by the need to replace industrial engineers who transfer to other occupations or leave the labor force. US Engineering Employment 2008 Civil engineers 278,400 Mechanical engineers 238,700 Industrial engineers 214,800 Electrical engineers 157,800
    [Show full text]