Grothendieck and the Six Operations
The Fifth International Conference on History of Modern Mathematics Xi’an, China August 18–24, 2019 Grothendieck and the six operations Luc Illusie Université Paris-Sud Plan 1. Serre’s duality theorem 2. Derived categories: Grothendieck’s revolution 3. The f ! functor: duality in the coherent setting 4. Duality in étale cohomology and the six operations 5. Further developments 1. Serre’s duality theorem Theorem 1 (ICM Amsterdam, 1954) k algebraically closed, X =k smooth, projective, irreducible, of dimension m, _ V a vector bundle on X , V = Hom(V ; OX ), i i 1 Ω := Λ ΩX =k . Then: m m (a) dimk H (X ; Ω ) = 1; (b) For all q 2 Z, the pairing Hq(X ; V ) ⊗ Hm−q(X ; V _ ⊗ Ωm) ! Hm(X ; Ωm)(!∼ k) is perfect. Remarks (a) Serre had previously proved (FAC) that, for any coherent sheaf q q F on X , and all q, dimk H (X ; F) < 1 and H (X ; F) = 0 for q > m. (b) Serre doesn’t exhibit a distinguished basis of Hm(X ; Ωm). Proof by induction on m, his vanishing theorems on Hq(X ; F(n)) for q > 0 and n large play a key role. Construction of a distinguished basis crucial in further work by Grothendieck et al. (c) Serre proved analogue for X =C smooth, compact analytic, V a vector bundle on X (Comm. Helv., 1955). Quite different techniques. Th. 1 revisited by Grothendieck: 1955-56, Sém. Bourbaki 149, May 1957 X =k smooth, projective, irreducible, dimension m as above. Theorem 2 (Grothendieck, loc. cit., Th.
[Show full text]