Nonabelian Hodge Theory and Vector Valued Modular Forms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curves, Surfaces, and Abelian Varieties
Curves, Surfaces, and Abelian Varieties Donu Arapura April 27, 2017 Contents 1 Basic curve theory2 1.1 Hyperelliptic curves.........................2 1.2 Topological genus...........................4 1.3 Degree of the canonical divisor...................6 1.4 Line bundles.............................7 1.5 Serre duality............................. 10 1.6 Harmonic forms............................ 13 1.7 Riemann-Roch............................ 16 1.8 Genus 3 curves............................ 18 1.9 Automorphic forms.......................... 20 2 Divisors on a surface 22 2.1 Bezout's theorem........................... 22 2.2 Divisors................................ 23 2.3 Intersection Pairing.......................... 24 2.4 Adjunction formula.......................... 27 2.5 Riemann-Roch............................ 29 2.6 Blow ups and Castelnuovo's theorem................ 31 3 Abelian varieties 34 3.1 Elliptic curves............................. 34 3.2 Abelian varieties and theta functions................ 36 3.3 Jacobians............................... 39 3.4 More on polarizations........................ 41 4 Elliptic Surfaces 44 4.1 Fibered surfaces........................... 44 4.2 Ruled surfaces............................ 45 4.3 Elliptic surfaces: examples...................... 46 4.4 Singular fibres............................. 48 4.5 The Shioda-Tate formula...................... 51 1 Chapter 1 Basic curve theory 1.1 Hyperelliptic curves As all of us learn in calculus, integrals involving square roots of quadratic poly- nomials can be evaluated by elementary methods. For higher degree polynomi- als, this is no longer true, and this was a subject of intense study in the 19th century. An integral of the form Z p(x) dx (1.1) pf(x) is called elliptic if f(x) is a polynomial of degree 3 or 4, and hyperelliptic if f has higher degree, say d. It was Riemann who introduced the geometric point of view, that we should really be looking at the algebraic curve Xo defined by y2 = f(x) 2 Qd in C . -
Schematic Homotopy Types and Non-Abelian Hodge Theory
Compositio Math. 144 (2008) 582–632 doi:10.1112/S0010437X07003351 Schematic homotopy types and non-abelian Hodge theory L. Katzarkov, T. Pantev and B. To¨en Abstract We use Hodge theoretic methods to study homotopy types of complex projective manifolds with arbitrary fundamental groups. The main tool we use is the schematization functor X → (X ⊗ C)sch, introduced by the third author as a substitute for the rationalization functor in homotopy theory in the case of non-simply connected spaces. Our main result is the construction of a Hodge decomposition on (X ⊗ C)sch. This Hodge decomposition is encoded in an action of the discrete group C×δ on the object (X ⊗ C)sch and is shown to recover the usual Hodge decomposition on cohomology, the Hodge filtration on the pro- algebraic fundamental group, and, in the simply connected case, the Hodge decomposition on the complexified homotopy groups. We show that our Hodge decomposition satisfies a purity property with respect to a weight filtration, generalizing the fact that the higher homotopy groups of a simply connected projective manifold have natural mixed Hodge structures. As applications we construct new examples of homotopy types which are not realizable as complex projective manifolds and we prove a formality theorem for the schematization of a complex projective manifold. Contents Introduction 583 1 Review of the schematization functor 589 1.1 Affine stacks and schematic homotopy types ................. 589 1.2 Equivariant stacks ............................... 594 1.3 Equivariant co-simplicial algebras and equivariant affine stacks ...... 595 1.4 An explicit model for (X ⊗ C)sch ....................... 597 2 The Hodge decomposition 598 2.1 Review of the non-abelian Hodge correspondence ............. -
Orientations for DT Invariants on Quasi-Projective Calabi-Yau 4-Folds
Orientations for DT invariants on quasi-projective Calabi{Yau 4-folds Arkadij Bojko∗ Abstract For a Calabi{Yau 4-fold (X; !), where X is quasi-projective and ! is a nowhere vanishing section of its canonical bundle KX , the (derived) moduli stack of compactly supported perfect complexes MX is −2-shifted symplectic and thus has an orientation ! bundle O !MX in the sense of Borisov{Joyce [11] necessary for defining Donaldson{ Thomas type invariants of X. We extend first the orientability result of Cao{Gross{ Joyce [15] to projective spin 4-folds. Then for any smooth projective compactification Y , such that D = Y nX is strictly normal crossing, we define orientation bundles on the stack MY ×MD MY and express these as pullbacks of Z2-bundles in gauge theory, constructed using positive Dirac operators on the double of X. As a result, we relate the ! orientation bundle O !MX to a gauge-theoretic orientation on the classifying space of compactly supported K-theory. Using orientability of the latter, we obtain orientability of MX . We also prove orientability of moduli spaces of stable pairs and Hilbert schemes of proper subschemes. Finally, we consider the compatibility of orientations under direct sums. 1 Introduction 1.1 Background and results Donaldson-Thomas type theory for Calabi{Yau 4-folds has been developed by Borisov{ Joyce [11], Cao{Leung [22] and Oh{Thomas [73] . The construction relies on having Serre duality Ext2(E•;E•) =∼ Ext2(E•;E•)∗ : for a perfect complex E•. This gives a real structure on Ext2(E•;E•), and one can take 2 • • its real subspace Ext (E ;E )R. -
Fundamental Algebraic Geometry
http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. -
Arxiv:1401.2824V1 [Math.AT]
ZMP-HH/14-2 Hamburger Beitr¨age zur Mathematik Nr. 499 January 2014 A Serre-Swan theorem for gerbe modules on ´etale Lie groupoids Christoph Schweigert a, Christopher Tropp b, Alessandro Valentino a a Fachbereich Mathematik, Universit¨at Hamburg Bereich Algebra und Zahlentheorie Bundesstraße 55, D – 20 146 Hamburg b Mathematisches Institut, WWU M¨unster Einsteinstr. 62, D – 48149 M¨unster Abstract Given a bundle gerbe on a compact smooth manifold or, more generally, on a compact ´etale Lie groupoid M, we show that the corresponding category of gerbe modules, if it is non-trivial, is equivalent to the category of finitely generated projective modules over an Azumaya algebra on M. This result can be seen as an equivariant Serre-Swan theorem for twisted vector bundles. 1 Introduction The celebrated Serre-Swan theorem relates the category of vector bundles over a compact smooth manifold M to the category of finite rank projective modules over the algebra of smooth functions C∞(M, C) of M (see [GBV, Mor] for the Serre-Swan theorem in the smooth category). It relates geometric and algebraic notions and is, in particular, the starting point for the definition of vector bundles in non-commutative geometry. arXiv:1401.2824v1 [math.AT] 13 Jan 2014 A bundle gerbe on M can be seen as a geometric realization of its Dixmier-Douady class, which is a class in H3(M; Z). To such a geometric realization, a twisted K-theory group can be associated. Gerbe modules have been introduced to obtain a geometric description of twisted K-theory [BCMMS]. -
Arxiv:2109.00850V1 [Math.AG] 2 Sep 2021 § Ncaatrsi Eo(E 1].Antrlqeto Shwt Gener to How Is Question Natural a and Bundles [17])
TAME PARAHORIC NONABELIAN HODGE CORRESPONDENCE IN POSITIVE CHARACTERISTIC OVER ALGEBRAIC CURVES MAO LI AND HAO SUN Abstract. Let G be a reductive group, and let X be an algebraic curve over an algebraically closed field k with positive characteristic. We prove a version of nonabelian Hodge correspondence for G- local systems over X and G-Higgs bundles over the Frobenius twist X′ with first order poles. To obtain a general statement of the correspondence, we introduce the language of parahoric group schemes to establish the correspondence. 1. Introduction 1.1. Background. Let X be a smooth projective scheme over C. In [18], Simpson constructed a homeomorphism between the moduli space of semistable Higgs bundles on X and the moduli space of representations of fundamental groups of X. This correspondence between local systems and Higgs bundles is analytic in nature, it does not preserve the algebraic structure. On the other hand, the work of [14] and [7] shows that the connection between Higgs bundles and local systems is much closer in prime characteristics. The main results of [7] shows that for a smooth projective curve X over an algebraically closed field k of positive characteristic, the stack of local systems on X is a twisted version of the stack of Higgs bundles on X′, the Frobenius twist of X. This result is a crucial ingredient in the proof of the geometric Langlands conjecture in positive characteristic on curves [8]. The Simpson correspondence also works for local systems and Higgs bundles with first order poles in characteristic zero (see [17]). A natural question is how to generalize the correspondence to G-Higgs bundles and G-local systems for reductive groups G (with first order poles). -
Section 3.7 - the Serre Duality Theorem
Section 3.7 - The Serre Duality Theorem Daniel Murfet October 5, 2006 In this note we prove the Serre duality theorem for the cohomology of coherent sheaves on a projective scheme. First we do the case of projective space itself. Then on an arbitrary projective ◦ scheme X, we show that there is a coherent sheaf ωX , which plays the role in duality theory similar to the canonical sheaf of a nonsingular variety. In particular, if X is Cohen-Macaulay, it gives a duality theorem just like the one on projective space. Finally, if X is a nonsingular variety ◦ over an algebraically closed field we show that the dualising sheaf ωX agrees with the canonical sheaf ωX . n Theorem 1. Suppose X = Pk for some field k and n ≥ 1 and set ω = ωX/k. Then for any coherent sheaf of modules F on X we have (a) There is a canonical isomorphism of k-modules Hn(X, ω) =∼ k. (b) There is a canonical perfect pairing of finite dimensional vector spaces over k τ : Hom(F , ω) × Hn(X, F ) −→ k (c) For i ≥ 0 there is a canonical isomorphism of k-modules natural in F η : Exti(F , ω) −→ Hn−i(X, F )∨ Proof. (a) By (DIFF,Corollary 22) there is a canonical isomorphism of sheaves of modules ω =∼ O(−n−1). Composing Hn(X, ω) =∼ Hn(X, O(−n−1)) with the isomorphism Hn(X, O(−n−1)) =∼ k of (COS,Theorem 40)(b) gives the required canonical isomorphism of k-modules. (b) The k-modules Hom(F , ω) and Hn(X, F ) are finitely generated by (COS,Corollary 44) and (COS,Theorem 43), therefore both are free of finite rank. -
A Twisted Nonabelian Hodge Correspondence
A TWISTED NONABELIAN HODGE CORRESPONDENCE Alberto Garc´ıa-Raboso A DISSERTATION in Mathematics Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2013 Tony Pantev David Harbater Professor of Mathematics Professor of Mathematics Supervisor of Dissertation Graduate Group Chairperson Dissertation Committee: Tony Pantev, Professor of Mathematics Ron Y. Donagi, Professor of Mathematics Jonathan L. Block, Professor of Mathematics UMI Number: 3594796 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3594796 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 A TWISTED NONABELIAN HODGE CORRESPONDENCE COPYRIGHT 2013 Alberto Garc´ıa-Raboso Acknowledgements I want to thank my advisor, Tony Pantev, for suggesting the problem to me and for his constant support and encouragement; the University of Pennsylvania, for its generous financial support in the form of a Benjamin Franklin fellowship; Carlos Simpson, for his continued interest in my work; Urs Schreiber, for patiently listening to me, and for creating and maintaining a resource as useful as the nLab; Marc Hoyois, for ever mentioning the words 1-localic 1-topoi and for answering some of my questions; Angelo Vistoli, for his help with Lemma 5.2.2; Tyler Kelly, Dragos, Deliu, Umut Isik, Pranav Pandit and Ana Pe´on-Nieto, for many helpful conversations. -
Constructions with Bundle Gerbes
Constructions with Bundle Gerbes Stuart Johnson Thesis submitted for the degree of Doctor of Philosophy in the School of Pure Mathematics University of Adelaide arXiv:math/0312175v1 [math.DG] 9 Dec 2003 13 December 2002 Abstract This thesis develops the theory of bundle gerbes and examines a number of useful constructions in this theory. These allow us to gain a greater insight into the struc- ture of bundle gerbes and related objects. Furthermore they naturally lead to some interesting applications in physics. i ii Statement of Originality This thesis contains no material which has been accepted for the award of any other degree or diploma at any other university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying. Stuart Johnson Adelaide, 13 December, 2002 iii iv Acknowledgement Firstly I would like to thank my supervisor Michael Murray. He has been extremely helpful, insightful and encouraging at all times and it has been a great pleasure to work with him. I would also like to thank Alan Carey for valuable assistance in the early stages of my work on this thesis and for his continuing support. Thanks are also due to Danny Stevenson for many interesting and helpful conversations and to Ann Ross for always being of assistance with administrative matters. I would also like to acknowledge the support of a University of Adelaide postgraduate scholarship. -
An Algebraic Proof of Riemann-Roch
BABY ALGEBRAIC GEOMETRY SEMINAR: AN ALGEBRAIC PROOF OF RIEMANN-ROCH RAVI VAKIL Contents 1. Introduction 1 2. Cohomology of sheaves 2 3. Statements of Riemann-Roch and Serre Duality; Riemann-Roch from Serre Duality 4 4. Proof of Serre duality 5 4.1. Repartitions, I(D), and J(D)5 4.2. Differentials enter the picture 7 4.3. Proving duality 7 References 8 1. Introduction I’m going to present an algebraic proof of Riemann-Roch. This is a hefty task, especially as I want to say enough that you can genuinely fill in all the details yourself. There’s no way I can finish in an hour without making this less self- contained, so what I’ll do is explain a bit about cohomology, and reduce Riemann- Roch to Serre duality. That should be do-able within an hour. Then I’ll give people a chance to leave, and after that I’ll prove Serre duality in the following half-hour. Also, these notes should help. And you should definitely stop me and ask ques- tions. For example, if I mention something I defined last semester in my class, and you’d like me to refresh your memory as to what the definition was, please ask. The proof I’ll present is from Serre’s Groupes alg´ebriques et corps de classes,Ch. 2, [S]. I found out this past Tuesday that this proof is originally due to Weil. Throughout, C is a non-singular projective algebraic curve over an algebraically closed field k. Date: Friday, February 11, 2000. -
Deformations of Gerbes on Smooth Mani- Folds
Deformations of gerbes on smooth mani- folds Paul Bressler,∗ Alexander Gorokhovsky,† Ryszard Nest , Boris Tsygan‡ Abstract. We identify the 2-groupoid of deformations of a gerbe on a C∞ manifold with the Deligne 2-groupoid of a corresponding twist of the DGLA of local Hochschild cochains on C∞ functions. Mathematics Subject Classification (2000). Primary 53D55; Secondary 58J42, 18D05. Keywords. Deformation, gerbe, algebroid. 1. Introduction In [5] we obtained a classification of formal deformations of a gerbe on a manifold (C∞ or complex-analytic) in terms of Maurer-Cartan elements of the DGLA of Hochschild cochains twisted by the cohomology class of the gerbe. In the present paper we develop a different approach to the derivation of this classification in the setting of C∞ manifolds, based on the differential-geometric approach of [4]. The main result of the present paper is the following theorem which we prove in Section 8. Theorem 1. Suppose that X is a C∞ manifold and S is an algebroid stack on X which is a twisted form of OX . Then, there is an equivalence of 2-groupoid valued functors of commutative Artin C-algebras ∼ 2 DefX (S) = MC (gDR(JX )[S]) . Notations in the statement of Theorem 1 and the rest of the paper are as ∞ follows. We consider a paracompact C -manifold X with the structure sheaf OX of complex valued smooth functions. Let S be a twisted form of OX , as defined in × Section 4.5. Twisted forms of OX are in bijective correspondence with OX -gerbes and are classified up to equivalence by H2(X; O×) =∼ H3(X; Z). -
Residues, Duality, and the Fundamental Class of a Scheme-Map
RESIDUES, DUALITY, AND THE FUNDAMENTAL CLASS OF A SCHEME-MAP JOSEPH LIPMAN Abstract. The duality theory of coherent sheaves on algebraic vari- eties goes back to Roch's half of the Riemann-Roch theorem for Riemann surfaces (1870s). In the 1950s, it grew into Serre duality on normal projective varieties; and shortly thereafter, into Grothendieck duality for arbitrary varieties and more generally, maps of noetherian schemes. This theory has found many applications in geometry and commutative algebra. We will sketch the theory in the reasonably accessible context of a variety V over a perfect field k, emphasizing the role of differential forms, as expressed locally via residues and globally via the fundamental class of V=k. (These notions will be explained.) As time permits, we will indicate some connections with Hochschild homology, and generalizations to maps of noetherian (formal) schemes. Even 50 years after the inception of Grothendieck's theory, some of these generalizations remain to be worked out. Contents Introduction1 1. Riemann-Roch and duality on curves2 2. Regular differentials on algebraic varieties4 3. Higher-dimensional residues6 4. Residues, integrals and duality7 5. Closing remarks8 References9 Introduction This talk, aimed at graduate students, will be about the duality theory of coherent sheaves on algebraic varieties, and a bit about its massive|and still continuing|development into Grothendieck duality theory, with a few indications of applications. The prerequisite is some understanding of what is meant by cohomology, both global and local, of such sheaves. Date: May 15, 2011. 2000 Mathematics Subject Classification. Primary 14F99. Key words and phrases. Hochschild homology, Grothendieck duality, fundamental class.