Constructions with Bundle Gerbes

Total Page:16

File Type:pdf, Size:1020Kb

Constructions with Bundle Gerbes Constructions with Bundle Gerbes Stuart Johnson Thesis submitted for the degree of Doctor of Philosophy in the School of Pure Mathematics University of Adelaide arXiv:math/0312175v1 [math.DG] 9 Dec 2003 13 December 2002 Abstract This thesis develops the theory of bundle gerbes and examines a number of useful constructions in this theory. These allow us to gain a greater insight into the struc- ture of bundle gerbes and related objects. Furthermore they naturally lead to some interesting applications in physics. i ii Statement of Originality This thesis contains no material which has been accepted for the award of any other degree or diploma at any other university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying. Stuart Johnson Adelaide, 13 December, 2002 iii iv Acknowledgement Firstly I would like to thank my supervisor Michael Murray. He has been extremely helpful, insightful and encouraging at all times and it has been a great pleasure to work with him. I would also like to thank Alan Carey for valuable assistance in the early stages of my work on this thesis and for his continuing support. Thanks are also due to Danny Stevenson for many interesting and helpful conversations and to Ann Ross for always being of assistance with administrative matters. I would also like to acknowledge the support of a University of Adelaide postgraduate scholarship. Finally I should acknowledge everyone, past and present, at Kathleen Lumley Col- lege as well as all of the other wonderful people that I have met in Adelaide and who have made my time here so enjoyable. v vi Contents 1 Introduction 1 2 Bundle Gerbes and Deligne Cohomology 5 2.1 AReviewofSheafCohomology ...................... 5 2.2 U(1)-Functions ............................... 7 2.3 U(1)-Bundles ................................ 9 2.4 Bundle0-Gerbes .............................. 10 2.5 BundleGerbes ............................... 15 3 Examples of Bundle Gerbes 21 3.1 TautologicalBundleGerbes . 21 3.2 TrivialBundleGerbes ........................... 24 3.3 LiftingBundleGerbes ........................... 27 3.4 TorsionBundleGerbes ........................... 28 3.5 CupProductBundleGerbes. 30 4 Other Geometric Realisations of Deligne Cohomology 37 4.1 TheBundleGerbeHierarchy. 37 4.2 Gerbes.................................... 38 4.3 Bundle2-Gerbes .............................. 39 4.4 Z-Bundle0-Gerbes ............................. 51 4.5 BpS1-Bundles................................ 53 4.6 Comparing the Various Realisations . 55 5 Holonomy and Transgression 57 5.1 Holonomy of U(1)-Bundles......................... 57 5.2 HolonomyofBundleGerbes . .. .. 62 5.3 HolonomyofBundle2-Gerbes . 65 5.4 AGeneralHolonomyFormula . 67 5.5 Transgression for Closed Manifolds . 71 6 Parallel Transport and Transgression with Boundary 73 6.1 ParallelTransportforBundles. 73 6.2 LoopTransgressionofBundleGerbes . 77 6.3 AGeneralFormulaforParallelTransport. 81 6.4 LoopTransgressionofBundle2-Gerbes . 86 vii 7 Further Results on Holonomy and Transgression 89 7.1 SomeGeneralResults............................ 89 7.2 The Holonomy of the Tautological Bundle Gerbe . 92 7.3 HolonomyReconstruction . .. .. 93 7.4 ReconstructionviaTransgression . 97 7.5 ReconstructionofBundle2-Gerbes . 100 7.6 GeometricTransgression . 103 7.7 GaugeTransformations. 107 8 Applications 113 8.1 TheWess-Zumino-WittenAction . 113 8.2 TheChern-SimonsAction . 115 8.3 D-BranesandAnomalyCancellation . 121 8.4 Axiomatic Topological Quantum Field Theory . 127 Bibliography 132 viii Chapter 1 Introduction Bundle gerbes were introduced by Murray [36] as geometric realisations of classes in H3(M, Z) on a manifold M. By geometric realisation we mean an equivalence class of geometric objects which is isomorphic to H3(M, Z). An example of this in lower degree is the relationship between isomorphism classes of principal U(1)-bundles, or equivalently line bundles, over M and the Chern class in H2(M, Z). The interest in H3(M, Z) was motivated by the appearance of such integral cohomology classes in a number of situations including central extensions of structure groups of principal bun- dles and Wess-Zumino-Witten (WZW) theory. There were already a number of other realisations of H3(M; Z), of particular interest are the gerbes of Giraud as described in Brylinski’s book [5]. These are, from a rather simplistic view, defined as sheaves of groupoids. The idea of bundle gerbe theory was to define realisations which did not involve sheaves. Instead it is possible to build a realisation out of principal U(1)- bundles. π Essentially a bundle gerbe over a manifold M consists of a submersion Y M and → a U(1)-bundle P Y [2] over the fibre product → Y [2] = Y Y = (y,y′) Y 2 π(y)= π(y′) ×π { ∈ | } The fibres of P are required to carry a certain associative product structure which is called the bundle gerbe product. In [36] bundle gerbe connections and curving were defined. Together these form a higher analogue of connections on U(1)-bundles. They also correspond to connective structures and curvings on gerbes [5]. A bundle gerbe connection is a connection, A, on the bundle P which is compatible with the bundle gerbe product. Denote the curvature [2] of this connection by F . Let π1 and π2 be the projections of each component Y Y . ∗ ∗→ A curving is a 2-form, η, on Y which satisfies δ(η) = F where δ(η) = π2 η π1 η. A bundle gerbe with connection and curving defines a class in the Deligne cohomology− 3 group H (M, Z(3)D) which may be thought of as the hypercohomology of a complex of sheaves, H2(M, U(1) Ω1(M) Ω2(M)). M → → The bundle gerbe construction has also been used to consider higher degree Cechˇ and Deligne classes [13]. In particular Stevenson has developed a theory of bundle 2- gerbes ([44],[43]) which have an associated class in H4(M, Z), and when given a higher 4 analogue of connection and curving give rise to a class in H (M, Z(4)D). There is a cup product in Deligne cohomology which was described by Esnault and Viehweg [17] and which has been given a geometric interpretation by Brylinski and McLaughlin ([5],[8]). 1 A generalisation of the concept of holonomy to bundle gerbes was first considered in [36]. Just as the holonomy of a U(1)-bundle with connection associates an element of U(1) to every loop in the base, the holonomy of a bundle gerbe with connection and curving associates an element of U(1) to every closed surface in the base. In one particular case bundle gerbe holonomy has been used to describe the WZW action [12]. These considerations lead to the transgression formulae derived by Gawedski [23] for dealing with such actions in general settings. These formulae generalise bundle holonomy and parallel transport to higher degree Deligne classes. Completely general transgression formulae have been given by Gomi and Terashima ([25],[26]). The relevance of Cechˇ and Deligne cohomology classes to applications in physics has been well established. For example Dijkgraaf and Witten [15] have used differential characters to find a general Chern-Simons Theory, Gomi [24] has considered the relation between gerbes and Chern-Simons theory and Freed and Witten [21] have considered the role of Deligne classes in anomaly cancellation in D-brane theory. As well as the WZW case we have already alluded to there are a number of other examples discussed in [12]. The basic aim of this thesis is to provide further development of the theory of bundle gerbes. The goal has been to develop this theory in a way which keeps in mind the need for a balance between an abstract approach which readily accommodates generalisation and an approach which more easily allows application of the theory and which could be of interest to a wider audience. For the first factor the most important feature is the bundle gerbe hierarchy principle which is a guiding principle for relating bundle gerbe type constructions corresponding to Deligne cohomology in various degrees. For the second factor we show how various constructions may be described in geometric terms, often allowing manipulation of diagrammatic representations of bundle gerbes to take the place of complicated calculations. With these factors as a guide we have described a number of constructions involving bundle gerbes. Some of these which have already been developed elsewhere are given in different forms or with a different emphasis to demonstrate the hierarchy principle or to relate more easily to our applications. We also describe some constructions which are new to bundle gerbe theory. Finally we show how these constructions are useful in applications of bundle gerbe theory to physics. We begin with a review of the basic features of Deligne cohomology and introduce the bundle gerbe family of geometric realisations via bundle 0-gerbes as an alternative to U(1)-bundles. This would appear to be a complicated approach however it simplifies the transition from bundles to bundle gerbes and allows us to develop some features of bundle gerbe theory in a setting which is still relatively familiar. We then define bundle gerbes and explain their role as representatives of degree 3 Deligne cohomology. In Chapter 3 we consider some important examples of bundle gerbes. Tautological bundle gerbes [36] are introduced by first defining a bundle 0-gerbe, helping to gain a feel for the bundle gerbe hierarchy. Trivial bundle gerbes are discussed in some detail since they play an important role in many constructions. In particular we give a detailed account of the distinction between trivial bundle gerbes which by definition have trivial Cechˇ class and D-trivial bundle gerbes which have trivial Deligne class. We then consider torsion bundle gerbes which are defined as bundle gerbes with a torsion Cechˇ class.
Recommended publications
  • Schematic Homotopy Types and Non-Abelian Hodge Theory
    Compositio Math. 144 (2008) 582–632 doi:10.1112/S0010437X07003351 Schematic homotopy types and non-abelian Hodge theory L. Katzarkov, T. Pantev and B. To¨en Abstract We use Hodge theoretic methods to study homotopy types of complex projective manifolds with arbitrary fundamental groups. The main tool we use is the schematization functor X → (X ⊗ C)sch, introduced by the third author as a substitute for the rationalization functor in homotopy theory in the case of non-simply connected spaces. Our main result is the construction of a Hodge decomposition on (X ⊗ C)sch. This Hodge decomposition is encoded in an action of the discrete group C×δ on the object (X ⊗ C)sch and is shown to recover the usual Hodge decomposition on cohomology, the Hodge filtration on the pro- algebraic fundamental group, and, in the simply connected case, the Hodge decomposition on the complexified homotopy groups. We show that our Hodge decomposition satisfies a purity property with respect to a weight filtration, generalizing the fact that the higher homotopy groups of a simply connected projective manifold have natural mixed Hodge structures. As applications we construct new examples of homotopy types which are not realizable as complex projective manifolds and we prove a formality theorem for the schematization of a complex projective manifold. Contents Introduction 583 1 Review of the schematization functor 589 1.1 Affine stacks and schematic homotopy types ................. 589 1.2 Equivariant stacks ............................... 594 1.3 Equivariant co-simplicial algebras and equivariant affine stacks ...... 595 1.4 An explicit model for (X ⊗ C)sch ....................... 597 2 The Hodge decomposition 598 2.1 Review of the non-abelian Hodge correspondence .............
    [Show full text]
  • Twenty-Five Years of Two-Dimensional Rational Conformal Field Theory
    ZMP-HH/09-21 Hamburger Beitr¨age zur Mathematik Nr. 349 October 2009 TWENTY-FIVE YEARS OF TWO-DIMENSIONAL RATIONAL CONFORMAL FIELD THEORY J¨urgen Fuchs a, Ingo Runkel b and Christoph Schweigert b a Teoretisk fysik, Karlstads Universitet Universitetsgatan 21, S–65188 Karlstad b Organisationseinheit Mathematik, Universit¨at Hamburg Bereich Algebra und Zahlentheorie Bundesstraße 55, D–20146 Hamburg A review for the 50th anniversary of the Journal of Mathematical Physics. 1 Introduction In this article we try to give a condensed panoramic view of the development of two-dimen- sional rational conformal field theory in the last twenty-five years. Given its limited length, our contribution can be, at best, a collection of pointers to the literature. Needless to say, the arXiv:0910.3145v2 [hep-th] 15 Jan 2010 exposition is highly biased, by the taste and the limited knowledge of the authors. We present in advance our apologies to everyone whose work has been inappropriately represented or even omitted. The study of conformal field theories in two dimensions has its origin in several distinct areas of physics: • In the attempt to describe the strong interactions in elementary particle physics in the frame- work of dual models. • Under the label string theory, these models were reinterpreted as a perturbation series containing a gravitational sector. Conformal field theories appear as theories defined on the world sheet that is swept out by the string [56]. • In statistical mechanics, conformal field theory plays a fundamental role in the theory of two- dimensional critical systems [189, 92] by describing fixed points of the renormalization group.
    [Show full text]
  • Fundamental Algebraic Geometry
    http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA.
    [Show full text]
  • Arxiv:1401.2824V1 [Math.AT]
    ZMP-HH/14-2 Hamburger Beitr¨age zur Mathematik Nr. 499 January 2014 A Serre-Swan theorem for gerbe modules on ´etale Lie groupoids Christoph Schweigert a, Christopher Tropp b, Alessandro Valentino a a Fachbereich Mathematik, Universit¨at Hamburg Bereich Algebra und Zahlentheorie Bundesstraße 55, D – 20 146 Hamburg b Mathematisches Institut, WWU M¨unster Einsteinstr. 62, D – 48149 M¨unster Abstract Given a bundle gerbe on a compact smooth manifold or, more generally, on a compact ´etale Lie groupoid M, we show that the corresponding category of gerbe modules, if it is non-trivial, is equivalent to the category of finitely generated projective modules over an Azumaya algebra on M. This result can be seen as an equivariant Serre-Swan theorem for twisted vector bundles. 1 Introduction The celebrated Serre-Swan theorem relates the category of vector bundles over a compact smooth manifold M to the category of finite rank projective modules over the algebra of smooth functions C∞(M, C) of M (see [GBV, Mor] for the Serre-Swan theorem in the smooth category). It relates geometric and algebraic notions and is, in particular, the starting point for the definition of vector bundles in non-commutative geometry. arXiv:1401.2824v1 [math.AT] 13 Jan 2014 A bundle gerbe on M can be seen as a geometric realization of its Dixmier-Douady class, which is a class in H3(M; Z). To such a geometric realization, a twisted K-theory group can be associated. Gerbe modules have been introduced to obtain a geometric description of twisted K-theory [BCMMS].
    [Show full text]
  • Fluxes, Bundle Gerbes and 2-Hilbert Spaces
    Lett Math Phys DOI 10.1007/s11005-017-0971-x Fluxes, bundle gerbes and 2-Hilbert spaces Severin Bunk1 · Richard J. Szabo2 Received: 12 January 2017 / Revised: 13 April 2017 / Accepted: 8 May 2017 © The Author(s) 2017. This article is an open access publication Abstract We elaborate on the construction of a prequantum 2-Hilbert space from a bundle gerbe over a 2-plectic manifold, providing the first steps in a programme of higher geometric quantisation of closed strings in flux compactifications and of M5- branes in C-fields. We review in detail the construction of the 2-category of bundle gerbes and introduce the higher geometrical structures necessary to turn their cate- gories of sections into 2-Hilbert spaces. We work out several explicit examples of 2-Hilbert spaces in the context of closed strings and M5-branes on flat space. We also work out the prequantum 2-Hilbert space associated with an M-theory lift of closed strings described by an asymmetric cyclic orbifold of the SU(2) WZW model, pro- viding an example of sections of a torsion gerbe on a curved background. We describe the dimensional reduction of M-theory to string theory in these settings as a map from 2-isomorphism classes of sections of bundle gerbes to sections of corresponding line bundles, which is compatible with the respective monoidal structures and module actions. Keywords Bundle gerbes · Higher geometric quantisation · Fluxes in string and M-theory · Higher geometric structures Mathematics Subject Classification 81S10 · 53Z05 · 18F99 B Severin Bunk [email protected] Richard J.
    [Show full text]
  • Arxiv:2109.00850V1 [Math.AG] 2 Sep 2021 § Ncaatrsi Eo(E 1].Antrlqeto Shwt Gener to How Is Question Natural a and Bundles [17])
    TAME PARAHORIC NONABELIAN HODGE CORRESPONDENCE IN POSITIVE CHARACTERISTIC OVER ALGEBRAIC CURVES MAO LI AND HAO SUN Abstract. Let G be a reductive group, and let X be an algebraic curve over an algebraically closed field k with positive characteristic. We prove a version of nonabelian Hodge correspondence for G- local systems over X and G-Higgs bundles over the Frobenius twist X′ with first order poles. To obtain a general statement of the correspondence, we introduce the language of parahoric group schemes to establish the correspondence. 1. Introduction 1.1. Background. Let X be a smooth projective scheme over C. In [18], Simpson constructed a homeomorphism between the moduli space of semistable Higgs bundles on X and the moduli space of representations of fundamental groups of X. This correspondence between local systems and Higgs bundles is analytic in nature, it does not preserve the algebraic structure. On the other hand, the work of [14] and [7] shows that the connection between Higgs bundles and local systems is much closer in prime characteristics. The main results of [7] shows that for a smooth projective curve X over an algebraically closed field k of positive characteristic, the stack of local systems on X is a twisted version of the stack of Higgs bundles on X′, the Frobenius twist of X. This result is a crucial ingredient in the proof of the geometric Langlands conjecture in positive characteristic on curves [8]. The Simpson correspondence also works for local systems and Higgs bundles with first order poles in characteristic zero (see [17]). A natural question is how to generalize the correspondence to G-Higgs bundles and G-local systems for reductive groups G (with first order poles).
    [Show full text]
  • A Twisted Nonabelian Hodge Correspondence
    A TWISTED NONABELIAN HODGE CORRESPONDENCE Alberto Garc´ıa-Raboso A DISSERTATION in Mathematics Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2013 Tony Pantev David Harbater Professor of Mathematics Professor of Mathematics Supervisor of Dissertation Graduate Group Chairperson Dissertation Committee: Tony Pantev, Professor of Mathematics Ron Y. Donagi, Professor of Mathematics Jonathan L. Block, Professor of Mathematics UMI Number: 3594796 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3594796 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 A TWISTED NONABELIAN HODGE CORRESPONDENCE COPYRIGHT 2013 Alberto Garc´ıa-Raboso Acknowledgements I want to thank my advisor, Tony Pantev, for suggesting the problem to me and for his constant support and encouragement; the University of Pennsylvania, for its generous financial support in the form of a Benjamin Franklin fellowship; Carlos Simpson, for his continued interest in my work; Urs Schreiber, for patiently listening to me, and for creating and maintaining a resource as useful as the nLab; Marc Hoyois, for ever mentioning the words 1-localic 1-topoi and for answering some of my questions; Angelo Vistoli, for his help with Lemma 5.2.2; Tyler Kelly, Dragos, Deliu, Umut Isik, Pranav Pandit and Ana Pe´on-Nieto, for many helpful conversations.
    [Show full text]
  • A Construction of String 2-Group Modelsusing a Transgression
    A Construction of String 2-Group Models using a Transgression-Regression Technique Konrad Waldorf Fakult¨at f¨ur Mathematik Universit¨at Regensburg Universit¨atsstraße 31 D–93053 Regensburg [email protected] Dedicated to Steven Rosenberg on the occasion of his 60th birthday Abstract In this note we present a new construction of the string group that ends optionally in two different contexts: strict diffeological 2-groups or finite-dimensional Lie 2-groups. It is canonical in the sense that no choices are involved; all the data is written down and can be looked up (at least somewhere). The basis of our construction is the basic gerbe of Gaw¸edzki-Reis and Meinrenken. The main new insight is that under a transgression- regression procedure, the basic gerbe picks up a multiplicative structure coming from the Mickelsson product over the loop group. The conclusion of the construction is a relation between multiplicative gerbes and 2-group extensions for which we use recent work of Schommer-Pries. MSC 2010: Primary 22E67; secondary 53C08, 81T30, 58H05 arXiv:1201.5052v2 [math.DG] 4 May 2012 1 Introduction The string group String(n) is a topological group defined up to homotopy equivalence as the 3-connected cover of Spin(n), for n =3 or n> 4. Concrete models for String(n) have been provided by Stolz [Sto96] and Stolz-Teichner [ST04]. In order to understand, e.g. the differential geometry of String(n), the so-called “string geometry”, it is necessary to have models in better categories than topological groups. Its 3-connectedness implies that String(n) is a K(Z, 2)-fibration over Spin(n), so that it cannot be a (finite-dimensional) Lie group.
    [Show full text]
  • Deformations of Gerbes on Smooth Mani- Folds
    Deformations of gerbes on smooth mani- folds Paul Bressler,∗ Alexander Gorokhovsky,† Ryszard Nest , Boris Tsygan‡ Abstract. We identify the 2-groupoid of deformations of a gerbe on a C∞ manifold with the Deligne 2-groupoid of a corresponding twist of the DGLA of local Hochschild cochains on C∞ functions. Mathematics Subject Classification (2000). Primary 53D55; Secondary 58J42, 18D05. Keywords. Deformation, gerbe, algebroid. 1. Introduction In [5] we obtained a classification of formal deformations of a gerbe on a manifold (C∞ or complex-analytic) in terms of Maurer-Cartan elements of the DGLA of Hochschild cochains twisted by the cohomology class of the gerbe. In the present paper we develop a different approach to the derivation of this classification in the setting of C∞ manifolds, based on the differential-geometric approach of [4]. The main result of the present paper is the following theorem which we prove in Section 8. Theorem 1. Suppose that X is a C∞ manifold and S is an algebroid stack on X which is a twisted form of OX . Then, there is an equivalence of 2-groupoid valued functors of commutative Artin C-algebras ∼ 2 DefX (S) = MC (gDR(JX )[S]) . Notations in the statement of Theorem 1 and the rest of the paper are as ∞ follows. We consider a paracompact C -manifold X with the structure sheaf OX of complex valued smooth functions. Let S be a twisted form of OX , as defined in × Section 4.5. Twisted forms of OX are in bijective correspondence with OX -gerbes and are classified up to equivalence by H2(X; O×) =∼ H3(X; Z).
    [Show full text]
  • [Math.AG] 26 Jan 2003 Gerbes and Abelian Motives
    Gerbes and Abelian Motives J.S. Milne∗ October 19, 2018. v1. Abstract Assuming the Hodge conjecture for abelian varieties of CM-type, one obtains a al good category of abelian motives over Fp and a reduction functor to it from the cat- egory of CM-motives over Qal. Consequently, one obtains a morphism of gerbes of fibre functors with certain properties. We prove unconditionally that there exists a morphism of gerbes with these properties, and we classify them. Contents Notationsandconventions . 3 Philosophy...................................... 4 Advicetothereader................................. 4 1 Some inverse limits. 6 Reviewofhigherinverselimits . ... 6 Notationsfromclassfieldtheory . ... 7 Inversesystemsindexedbyfields. ... 8 The inverse system (C(K)) ............................. 8 The inverse system (K×/U(K)) .......................... 10 × × The inverse system (K /K+ ) ........................... 11 × × arXiv:math/0301304v1 [math.AG] 26 Jan 2003 The inverse system (K(w) /K(w)+) ....................... 13 Conclusions..................................... 14 2 The cohomology of protori 15 Reviewofaffinegroupschemes . 15 Continuouscohomology .............................. 15 Ad`eliccohomology ................................. 19 3 The cohomology of the Serre and Weil-number protori. 21 The Serre protorus S................................. 21 The Weil-number protorus P ............................ 22 The cohomology of S/P ............................... 26 ∗Partially supported by the National Science Foundation. 1 CONTENTS 2 4 The fundamental
    [Show full text]
  • An Introduction to Gerbes on Orbifolds
    ANNALES MATHÉMATIQUES BLAISE PASCAL Ernesto Lupercio, Bernardo Uribe An introduction to gerbes on orbifolds Volume 11, no2 (2004), p. 155-180. <http://ambp.cedram.org/item?id=AMBP_2004__11_2_155_0> © Annales mathématiques Blaise Pascal, 2004, tous droits réservés. L’accès aux articles de la revue « Annales mathématiques Blaise Pascal » (http://ambp.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copy- right. Publication éditée par le laboratoire de mathématiques de l’université Blaise-Pascal, UMR 6620 du CNRS Clermont-Ferrand — France cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Annales Mathematiques Blaise Pascal 11, 155-180 (2004) An introduction to gerbes on orbifolds Ernesto Lupercio1 Bernardo Uribe Abstract This paper is a gentle introduction to some recent results involv- ing the theory of gerbes over orbifolds for topologists, geometers and physicists. We introduce gerbes on manifolds, orbifolds, the Dixmier- Douady class, Beilinson-Deligne orbifold cohomology, Cheeger-Simons orbifold cohomology and string connections. Contents 1 Gerbes on smooth manifolds. 155 2 Orbifolds 160 3 Gerbes over Orbifolds. 167 4 Holonomy 171 5 Acknowledgments 176 1 Gerbes on smooth manifolds. We will start by explaining a well known example arising in electromagnetism as a motivation for the theory of gerbes. We will consider our space-time as canonically split as follows 4 4 3 3 M = R = R × R = {(x1, x2, x3, t): x ∈ R , t ∈ R}.
    [Show full text]
  • Arxiv:1904.10254V1 [Math.DG] 23 Apr 2019 Eortspooe Htmte a Uligbok Nie Hc H Which Atom
    Tsemo Aristide College Boreal 1 Yonge Street Toronto, ON M5E 1E5 [email protected] Gerbes, uncertainty and quantization. A` mon p`ere; tu vivras toujours dans mon coeur. Abstract. The explanation of the photoelectric effect by Einstein and Maxwell’s field theory of electromagnetism have motivated De Broglie to make the hypothesis that matter exhibits both waves and particles like-properties. These representa- tions of matter are enlightened by string theory which represents particles with stringlike entities. Mathematically, string theory can be formulated with a gauge theory on loop spaces which is equivalent to the differential geometry of gerbes. In this paper, we show that the descent theory of Giraud and Grothendieck can enable to describe the wave-like properties of the matter with the quantization of a theory of particles. The keypoint is to use the fact that the state space is defined by a projective bundle over the parametrizing manifold which induces a gerbe which represents the geometry obstruction to lift this bundle to a vector bundle. This is equivalent to saying that a phase is determined up to a complex number of module 1. When this uncertainty occurs, we cannot locate precisely the position of a particle, and the smallest dimensional quantity that can be de- scribed is a 1 dimensional manifold; this leads to the concept of wave properties of the matter and string theory. 1. Introduction. The structure of matter is a question which has always interested scientists arXiv:1904.10254v1 [math.DG] 23 Apr 2019 and philosophers. According to Aristotle, matter was infinitely divisible, while Democritus proposed that matter has a building block, an idea which has leaded to the concept of atom.
    [Show full text]