Descartes and His Critics on Space and Vacuum A

Total Page:16

File Type:pdf, Size:1020Kb

Descartes and His Critics on Space and Vacuum A DESCARTES AND HIS CRITICS ON SPACE AND VACUUM A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Joseph Raphael Zepeda Karl Ameriks, Co-Director Anja Jauernig, Co-Director Graduate Program in History and Philosophy of Science Notre Dame, Indiana July 2009 © Copyright by Joseph R. Zepeda 2009 All rights reserved DESCARTES AND HIS CRITICS ON SPACE AND VACUUM Abstract by Joseph Raphael Zepeda This study is an interpretation of Descartes’ theory of space and vacuum. Descartes famously holds that space is identical to matter, and that a vacuum or empty space is logically impossible. These positions earned Descartes a great deal of criticism from philosophers during the seventeenth and eighteenth centuries. Two main strands of criticism are dealt with here. First, Descartes was charged with dogmatism for holding that rival notions of space were inconceivable, a position for which he seems to have no good arguments. Second, some philosophers claimed that Descartes is guilty of inconsistency: his position on the vacuum, they said, was incompatible with his theory of the metaphysics of extended substance. This dissertation comprises a comprehensive interpretation of Descartes’ treatment of space and vacuum, particularly in the Principles of Philosophy (1644). A new reading of the discussion of place and space in Principles Part II is articulated and defended; the result is a fundamental rethinking of what Descartes means by the claim that body and space are identical. This reinterpretation provides the basis for the culminating point of the study. Descartes’ position on the vacuum is discussed in relation to a number of different understandings of what a vacuum might be. The different Joseph R. Zepeda arguments he offers concerning the vacuum are analyzed and related to each other. Two chapters are devoted to objections raised by Arnauld, Henry More, and Spinoza. The implications of these objections for Descartes’ theory of extended substance are pursued in these chapters, and direction for further research on this topic is discussed in an appendix. The central thesis argued here is that Descartes’ position on space and vacuum is more plausible in its context than has been recognized. It turns out that Descartes takes great care to address the strengths of his opponents’ positions on space and vacuum, and that he has an argument for his view involving an appeal to ontological economy or simplicity. His position on this topic, which is commonly taken to be a paradigmatic example of dogmatism, is argued for more plausibly, and more responsibly, than has previously been recognized. For my wife Julie ii CONTENTS Introduction..............................................................................................................1 Chapter One: Descartes on the Concept of a Space...............................................14 Chapter Two: Against the Vacuum........................................................................46 Chapter Three: Descartes’ Critics I: Arnauld and Henry More.............................96 Chapter Four: Descartes’ Critics II: Spinoza.......................................................127 Chapter Five: Matter and Space according to the Order of Reasons...................165 Appendix: The Metaphysics of Extended Substance in Descartes......................208 Bibliography ....................................................................................................... 223 iii INTRODUCTION Descartes famously holds that body and space are identical, and that an empty space or vacuum is logically impossible. Perhaps it would be better to say that he infamously holds these views; certainly there was no lack of criticism directed toward them, even by his followers, in the seventeenth and eighteenth centuries. Locke offers a fairly typical response in the Essay, in his discussion of the idea of space or extension: There are some that would persuade us, that Body and Extension are the same thing; who either change the Signification of Words, which I would not suspect them of, they having so severely condemned the Philosophy of others, because it hath been too much placed in the uncertain meaning, or deceitful obscurity of doubtful or insignificant Terms.1 Locke drives home his point here by referring to Descartes’ criticism of the Scholastic Aristotelians—these are the “others” who based their philosophy on “doubtful or insignificant Terms.” The point, then, is that the Cartesian position is based on nothing but a stipulated definition. Locke goes on to enumerate the ways in which our actual idea of space differs from that of body. This is not an idiosyncratic line of thought on Locke’s part. Among the major early modern philosophers there are few who do not think that Descartes’ position on space and vacuum is either badly argued, hopelessly dogmatic, or both. Among those who do accept the Cartesian 1 John Locke, Essay concerning Human Understanding II.XIII.11, ed. Peter Nidditch (Oxford: Clarendon, 1975): 171. 1 position on the vacuum, most find this incompatible with other aspects of his metaphysics of extension: Spinoza is a notable example, but some important Cartesians fit the description as well. This study aims to provide an interpretation of these notorious theses in Descartes, chiefly as they are articulated in the Principles of Philosophy. Some crucial aspects of Descartes’ view on space and matter have been misunderstood, and once this has been remedied the case for his position against the then-available alternatives is significantly strengthened. Moreover, it turns out that Descartes can plausibly resist the charges of Spinoza and others that his theory of extended substance is incompatible with his position on the vacuum. Before specifying in more detail the context, content and aims of the following chapters, it is important to clarify what this study does not address. The question of the existence or possibility of the vacuum is well-known as a historical battleground between rationalism and empiricism, broadly speaking. Descartes and Pascal on the barometer, Hobbes and Boyle on the air pump; there is a long history of taking these debates as case studies for the conflict between different approaches to natural philosophy.2 This study addresses criticisms of Descartes’ position, but focuses on those which engage Descartes largely on his own terms, rather than those which call into question the whole project of rationalist natural philosophy. This does not rule out some who are normally classified as empiricists; some objections from 2 In the recent decades the literature has embraced a more nuanced view of these debates, a view influenced by the suspicion of naïve or dogmatic empiricism in the history and philosophy of science. For a good discussion of Pascal and Descartes, see Daniel Garber, Descartes’ Metaphysical Physics (Chicago: University of Chicago Press, 1992): 136-143. A now-classic account of the Hobbes- Boyle debate is Stephen Shapin and Simon Schaffer, Leviathan and the Air Pump: Hobbes, Boyle and the Experimental Life (Princeton: Princeton UP, 1989). 2 Locke will receive sustained discussion here. Debates about the place of experiment in natural science, however, are not the topic of this study. Descartes’ views on space have also been examined and criticized with respect to his physics. For example, the issues brought up by Newton in his famous scholium on space and time in the Principia, or by Leibniz and Clarke in their equally famous correspondence, are relevant in assessing Descartes’ views on space taken broadly, notwithstanding the risk of anachronism in interpretation. Generally, it is important to ascertain the degree to which Descartes’ laws of motion are compatible with his rejection of a body-independent space. A recent monograph by Edward Slowik addresses these and related topics, with an eye towards reconstructing, as far as possible, a plausible and coherent relational space-time theory to accompany Descartes’ physics.3 The present study, however, is concerned with a different set of arguments. Descartes’ explicit treatment of space and place deals only with general features of bodies and motion, rather than the particular demands of any developed physics, and it is the former that is addressed here. To the extent that Descartes is defended in this study, it is not an assessment of his physics or the spacetime theory it requires. Descartes’ position on space and vacuum is supposed to be a result of his definition of matter or body, so it is worthwhile to sketch out some of the relevant background within the Cartesian corpus. A conception of matter as having only geometrical features, as mere extension, is a persistent feature of Descartes’ thought, 3 Edward Slowik, Cartesian Spacetime: Descartes’ Physics and the Relational Theory of Space and Motion (Dordrecht: Kluwer, 2002). 3 from the early Rules for the Direction of the Mind (1628) all the way through to the Principles (1644). In the Regulae this is tied up with Descartes’ ambitions for a universal method of problem-solving. Extension is something like a maximally intelligible medium in terms of which problems can be reformulated, classified and solved, if possible. It is contested whether there is any significant continuity between the methodology described in the Regulae and the more schematic rules proposed in later works such as the Discourse on Method or the Replies to Objections to
Recommended publications
  • Towards an Ontology of Space for GFO
    Formal Ontology in Information Systems 53 R. Ferrario and W. Kuhn (Eds.) © 2016 The authors and IOS Press. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License. doi:10.3233/978-1-61499-660-6-53 Towards an Ontology of Space for GFO Ringo BAUMANN a, Frank LOEBE a,1 and Heinrich HERRE b a Computer Science Institute, University of Leipzig, Germany b IMISE, University of Leipzig, Germany Abstract. Space and time are basic categories of any top-level ontology. They ac- count for fundamental assumptions of the modes of existence of those individuals that are said to be in space and time. The present paper is devoted to GFO-Space, the ontology of space in the General Formal Ontology (GFO). This ontology is in- troduced by a set of axioms formalized in first-order logic and further elucidated by consequences of the axiomatization. The theory is based on four primitives: the category of space regions, the rela- tions of being a spatial part and being a spatial boundary, as well as the relation of spatial coincidence. The presence of boundaries and the notion of coincidence witness an inspiration of the ontology by well-motivated ideas of Franz Brentano on space, time and the continuum. Taking up a line of prior investigations of his ap- proach, the present work contributes a further step in establishing a corresponding ontology of space, employing rigorous logical methods. Keywords. top-level ontology, theory of space, theory of boundaries 1.
    [Show full text]
  • Opening up Bodyspace: Perspectives from Posthuman and Feminist Theory Xenia Kokoula
    11 Opening up Bodyspace: Perspectives from Posthuman and Feminist Theory Xenia Kokoula Introduction bodily formations, entanglements and alliances The field of architecture has long been dominated by are we confronted with? As our powers of shaping the human body as the measure of things.1 Situated and transforming all spatial scales – from the scale in the single room, the home, the neighborhood, of the body to that of the planet – become clear the city and moving on to larger and larger scales, in what has been called the Anthropocene, these the human body takes centre stage in the design questions become all the more urgent even if they process. Αs several scholars have critically noted, far exceed the scope of this essay.5 this is the normalised and normative white male body, as exemplified in Le Corbusier’s Modulor or Confronted with emerging spatio-corporeal para- in Ernst Neufert’s still routinely used handbook.2 digms, architects can no longer solely rely on a It is a whole and closed body surrounded by and theoretical canon that has historically ‘been defi- enclosed in spatial spheres that are firmly placed in cient in the very tools of self-criticism’.6 They must a pre-existing Cartesian universe. therefore seek inspiration in related discourses in the humanities and social sciences. The main Recent theoretical discussions have questioned purpose of this essay is, thus, to suggest possible this implicit understanding of the body as a closed starting points, and speculatively explore a range and impenetrable unity, along with the wider rejec- of conceptual paradigms and their implications for tion of anthropocentricism, and the role and limits design.
    [Show full text]
  • The Aethereal Universe
    TThhee AAeetthheerreeaall UUnniivveerrssee Andrew Holster Sept. 2014 Minor revisions Sept. 2015 CCoonntteennttss INTRODUCTION TO THE AETHEREAL UNIVERSE. ............ 4 PART 1. THE PHYSICS OF TAU ................................................. 20 1. The Aethereal Universe, starting from particle physics. .................................. 21 1.1 Overview 1: TAU on the cosmic scale. ......................................................... 22 1.2 Overview 2. TAU on the microscopic scale. ................................................. 23 1.3 Overview 3. TAU on the inside. .................................................................... 24 2. STR from extra circular dimensions. ............................................................... 26 2.1 STR from simple maths. ................................................................................ 27 3. QM from extra circular dimensions. ................................................................ 30 3.1 QM from simple maths. ................................................................................. 31 4. The Torus ......................................................................................................... 32 5. Particle strings. ................................................................................................. 33 5.1 Quantum entanglement. ................................................................................. 34 5.2 Quantum Entanglement mechanisms. ............................................................ 35 5.3 Quantum entanglement
    [Show full text]
  • Space, Time and Einstein
    Space, Time and Einstein Space, Time and Einstein An Introduction J. B. Kennedy © J. B. Kennedy 2003 This book is copyright under the Berne Convention. No reproduction without permission. All rights reserved. First published in 2003 by Acumen Acumen Publishing Limited 15A Lewins Yard East Street Chesham HP5 1HQ www.acumenpublishing.co.uk ISBN: 1-902683-66-8 (hardcover) ISBN: 1-902683-67-6 (paperback) British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Designed and typeset by Kate Williams, Abergavenny. Printed and bound by Biddles Ltd., Guildford and King’s Lynn. For Carole and John Crascall Contents Preface and acknowledgements ix Part I: Einstein’s revolution 1 1 From Aristotle to Hiroshima 3 2 Einstein in a nutshell 7 3 The twin paradox 31 4 How to build an atomic bomb 40 5 The four-dimensional universe 50 6 Time travel is possible 66 7 Can the mind understand the world? 71 Part II: Philosophical progress 75 8 Who invented space? 77 9 Zeno’s paradoxes: is motion impossible? 92 10 Philosophers at war: Newton vs. Leibniz 104 11 The philosophy of left and right 126 12 The unreality of time 133 13 General relativity: is space curved? 139 14 The fall of geometry: is mathematics certain? 149 15 The resurrection of absolutes 159 16 The resilience of space 172 vii SPACE, TIME AND EINSTEIN Part III: Frontiers 175 17 Faster than light: was Einstein wrong? 177 18 The Big Bang: how did the universe begin? 185 19 Black holes: trapdoors to nowhere 188 20 Why haven’t aliens come visiting? 193 21 The inflationary and accelerating universe 197 22 Should we believe the physicists? 202 Appendix A: Spacetime diagrams 207 Appendix B: Symmetry and Lorentz’s minority interpretation 222 Appendix C: Simple formulas for special relativity 225 Appendix D: Websites 227 Appendix E: Guide to further reading 229 Index 239 viii Preface and acknowledgements The ongoing revolution in our understanding of space and time is so central to the drama of our times that no educated person can remain ignorant of it.
    [Show full text]
  • Philosophy and Foundations of Physics Series Editors: Dennis Dieks and Miklos Redei
    Philosophy and Foundations of Physics Series Editors: Dennis Dieks and Miklos Redei In this series: Vol. 1: The Ontology of Spacetime Edited by Dennis Dieks Vol. 2: The Structure and Interpretation of the Standard Model By Gordon McCabe Vol. 3: Symmetry, Structure, and Spacetime By Dean Rickles Vol. 4: The Ontology of Spacetime II Edited by Dennis Dieks The Ontology of Spacetime II Edited by Dennis Dieks Institute for History and Foundations of Science Utrecht University Utrecht, The Netherlands Amsterdam – Boston – Heidelberg – London – New York – Oxford – Paris San Diego – San Francisco – Singapore – Sydney – Tokyo Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK First edition 2008 Copyright © 2008 Elsevier B.V. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.
    [Show full text]
  • Lump Sugar and Salt Shaker’-Like Nano and Pico Space Devices and Robots
    International Workshop on Instrumentation for Planetary Missions (2012) 1122.pdf ‘LUMP SUGAR AND SALT SHAKER’-LIKE NANO AND PICO SPACE DEVICES AND ROBOTS. Vizi, P.1 , Horváth A.2,3, Hudoba Gy.4, Bérczi Sz.3,5 , Sík A. 3,5. 1Wigner Research Centre for Physics, H-1121 Bud- apest, Konkoly-Thege M. út 35. Hungary, 2Konkoly Observatory, H-1121 Budapest, Konkoly-Thege M. út 13-17. Hungary, 3NEST Foundation, Budapest, 4Óbuda University, Alba Regia University Center, H-8000, Székesfehérvár, Budai út 45., Hungary. 5Eötvös University, Institute of Physics, H-1117 Budapest, Pázmány Péter sétány 1/a., Hun- gary. ([email protected]) Introduction: In the present article we give a brief Size. The size of the device is similar to a Lump summary of some new ideas coming from the micro Sugar in the inch or centimeter range and when neces- and nano technology which have become available for sary can contains smaller parts, see below. space technologies, too. The application of the Nano-, Pico- Space Devices and Robots (NPSDR) focuses on detections and measurements which can be carried out on planetary surfaces with a new strategy, i.e. a mul- tiple and parallel use of these instruments. The great number of NPSDR devices allows covering larger sur- faces on the planet measuring several focused paramet- ers. Using NPSDR devices we also focus on environ- mentally friendly instruments in Space. We selected a promising application field: studies on defrosting phe- nomena of DDS at the South Polar Regions of Mars. Proposal to put into ExoMars Program two boxes and during orbits of landing drop them onto Poles.
    [Show full text]
  • The Ontology of Spacetime
    The Ontology of Spacetime i Philosophy and Foundations of Physics Series Editors: Dennis Dieks and Miklos Redei In this series: Vol. 1: The Ontology of Spacetime Edited by Dennis Dieks ii The Ontology of Spacetime Edited by Dennis Dieks History and Foundations of Science, Utrecht University, Utrecht, The Netherlands Amsterdam – Boston – Heidelberg – London – New York – Oxford – Paris San Diego – San Francisco – Singapore – Sydney – Tokyo iii Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK First edition 2006 Copyright r 2006 Elsevier B.V. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances
    [Show full text]
  • Leibniz's Theory of Space RTW Arthur 1
    Leibniz’s Theory of Space R. T. W. Arthur LEIBNIZ’S T HEORY OF SPACE1 R. T. W. Arthur “I don’t say that space is an order or situation, but an order of situations, or an order according to which situations are disposed, and that abstract space is that order of situations when they are conceived as being possible.” (To Clarke, 5th Letter, §104) “Only atoms of substance, that is to say real unities absolutely devoid of parts, can be the sources of actions, and the first absolute principles of the composition of things, and as it were the ultimate elements in the analysis of substantial things. They might be called metaphysical points; they have a kind of vitality and a sort of perception; mathematical points are their points of view for expressing the universe.” (New System, §11) If Leibniz’s contribution to the theory of space is measured by his influence on subsequent developments in mathematics and physics, it is a tale of brilliant innovation, incisive criticisms and inspired suggestions. First and foremost, Leibniz is celebrated as the most powerful and influential protagonist of the relational theory of space, according to which space consists solely in the relations among bodies, and is not (as Newton claimed) an entity existing in its own right. His criticisms of Newton’s absolutism and defence of a relationalist alternative have reverberated down three centuries, helping to inspire Mach’s philosophy of space and time, Einstein’s theories of relativity, and now a new generation of researchers in quantum gravity.2 In mathematics, his idea of Analysis Situs, a generalized geometry of situation not involving co-ordinates, is celebrated as having inspired Graßman’s invention of vector algebra as well as the modern mathematical science of topology.
    [Show full text]
  • The Axiomatic Foundation of Space In
    Applied Ontology ? (2011) 1–36 1 IOS Press The Axiomatic Foundation of Space in GFO Ringo Baumann a and Heinrich Herre b a Department of Intelligent Systems, University of Leipzig E-mail: [email protected] b Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig E-mail: [email protected] Abstract. Space and time are basic categories of any top-level ontology. They are fundamental assumptions for the mode of existence of those individuals which are said to be in space and time. In the present paper the ontology of space in the General Formal Ontology (GFO) is expounded. This ontology is represented as a theory BT (Brentano Theory), which is specified by a set of axioms formalized in first-order logic. This theory uses four primitive relations: SReg(x) (x is space region), spart(x,y) (x is spatial part of y), sb(x,y) (x is spatial boundary of y), and scoinc(x,y) (x and y spatially coincide). This ontology is inspired by ideas of Franz Brentano. The investigation and exploration of Franz Brentano’s ideas on space and time began about twenty years ago by work of R.M. Chisholm, B. Smith and A. Varzi. The present paper takes up this line of research and makes a further step in establishing an ontology of space which is based on rigorous logical methods and on principles of the new philosophical approach of integrative realism. Keywords: space, top-level ontology, axiomatic method 1. Introduction Space and time are basic categories of any top-level ontology.
    [Show full text]
  • Container Space and Relational Space
    10 CONTAINER SPACE AND RELATIONAL SPACE Leibniz's attack on Newton's conception of space and Einstein's special theory of relativity are the two important starting points for modern philosophical discussions of space. The theories of Leibniz and Einstein contradict Newton's ideas but in different ways. Newtonian space is a complex notion, it is possible to criticize it in some respects and defend it in others. In order to capture the category of space its different constituent aspects must be carefully distinguished. In post-Newtonian discussions they have all too often been run together in an unfortunate manner. Leibniz's criticism is mainly that Newtonian space is not relational. The specifically Einsteinian criticism has been that space has a relativistic metric. There is also a third kind of criticism, associated with Ernst Mach, which should be kept clearly apart from the other two. It claims that what is wrong with Newtonian space is that it is not relative. Newtonian space is neither relational, nor relative, nor relativistic. It is absolute, but 'absolute' means one thing when contrasted with 'relational', something else when contrasted with 'relative' and something else again when contrasted with 'relativistic'. I shall therefore avoid this ambiguous term as far as possible and instead use 'container space', 'non-relative space', and 'non-relativistic space' respectively. I shall argue that these distinctions are related as in Figure 10.1.1 The important thing about this figure is that it shows that the category 'container space' subsumes the different concepts of space which are or have been, proposed within physical science.
    [Show full text]
  • Topologies of Culture
    Article Theory, Culture & Society 29(4/5) 3–35 ! The Author(s) 2012 Introduction: The Reprints and permissions: sagepub.co.uk/journalsPermissions.nav Becoming Topological DOI: 10.1177/0263276412454552 of Culture tcs.sagepub.com Celia Lury University of Warwick, UK Luciana Parisi Goldsmiths, University of London, UK Tiziana Terranova University of Naples ‘L’Orientale’, Italy Abstract In social and cultural theory, topology has been used to articulate changes in struc- tures and spaces of power. In this introduction, we argue that culture itself is becom- ing topological. In particular, this ‘becoming topological’ can be identified in the significance of a new order of spatio-temporal continuity for forms of economic, political and cultural life today. This ordering emerges, sometimes without explicit coordination, in practices of sorting, naming, numbering, comparing, listing, and calculating. We show that the effect of these practices is both to introduce new continuities into a discontinuous world by establishing equivalences or similitudes, and to make and mark discontinuities through repeated contrasts. In this multiplica- tion of relations, topological change is established as being constant, normal and immanent, rather than being an exceptional form, which is externally produced; that is, forms of economic, political and cultural life are identified and made legible in terms of their capacities for continuous change. Outlining the contributions to this Special Issue, the introduction discusses the meaning of topological culture and
    [Show full text]
  • An Introduction to Spatiality and the Early Modern Concept of Space Jonathan Regier, Koen Vermeir
    Boundaries, Extents and Circulations: An Introduction to Spatiality and the Early Modern Concept of Space Jonathan Regier, Koen Vermeir To cite this version: Jonathan Regier, Koen Vermeir. Boundaries, Extents and Circulations: An Introduction to Spatiality and the Early Modern Concept of Space. Vermeir, Koen and Regier, Jonathan. Boundaries, Extents and Circulations. Space and Spatiality in Early Modern Natural Philosophy, Springer, pp.1–32, 2016, 978-3-319-41074-6. 10.1007/978-3-319-41075-3. halshs-01422144 HAL Id: halshs-01422144 https://halshs.archives-ouvertes.fr/halshs-01422144 Submitted on 23 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Boundaries, Extents and Circulations: An Introduction to Spatiality and the Early Modern Concept of Space Jonathan Regier Institute for Advanced Study, Hong Kong University of Science and Technology, Lo Ka Chung Building, Lee Shau Kee Campus, HKUST, Clear Water Bay, Kowloon, Hong Kong. [email protected] Koen Vermeir SPHERE (UMR 7219), CNRS/Université Paris Diderot, Sorbonne Paris-Cité, bâtiment Condorcet, case 7093, 5 rue Thomas Mann, 75205 Paris cedex 13, France. [email protected] Abstract. This introductory chapter spells out our vision of a more inclusive history of space.
    [Show full text]