Philosophy and Foundations of Physics Series Editors: Dennis Dieks and Miklos Redei
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Detailing Coherent, Minimum Uncertainty States of Gravitons, As
Journal of Modern Physics, 2011, 2, 730-751 doi:10.4236/jmp.2011.27086 Published Online July 2011 (http://www.SciRP.org/journal/jmp) Detailing Coherent, Minimum Uncertainty States of Gravitons, as Semi Classical Components of Gravity Waves, and How Squeezed States Affect Upper Limits to Graviton Mass Andrew Beckwith1 Department of Physics, Chongqing University, Chongqing, China E-mail: [email protected] Received April 12, 2011; revised June 1, 2011; accepted June 13, 2011 Abstract We present what is relevant to squeezed states of initial space time and how that affects both the composition of relic GW, and also gravitons. A side issue to consider is if gravitons can be configured as semi classical “particles”, which is akin to the Pilot model of Quantum Mechanics as embedded in a larger non linear “de- terministic” background. Keywords: Squeezed State, Graviton, GW, Pilot Model 1. Introduction condensed matter application. The string theory metho- dology is merely extending much the same thinking up to Gravitons may be de composed via an instanton-anti higher than four dimensional situations. instanton structure. i.e. that the structure of SO(4) gauge 1) Modeling of entropy, generally, as kink-anti-kinks theory is initially broken due to the introduction of pairs with N the number of the kink-anti-kink pairs. vacuum energy [1], so after a second-order phase tran- This number, N is, initially in tandem with entropy sition, the instanton-anti-instanton structure of relic production, as will be explained later, gravitons is reconstituted. This will be crucial to link 2) The tie in with entropy and gravitons is this: the two graviton production with entropy, provided we have structures are related to each other in terms of kinks and sufficiently HFGW at the origin of the big bang. -
Towards an Ontology of Space for GFO
Formal Ontology in Information Systems 53 R. Ferrario and W. Kuhn (Eds.) © 2016 The authors and IOS Press. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License. doi:10.3233/978-1-61499-660-6-53 Towards an Ontology of Space for GFO Ringo BAUMANN a, Frank LOEBE a,1 and Heinrich HERRE b a Computer Science Institute, University of Leipzig, Germany b IMISE, University of Leipzig, Germany Abstract. Space and time are basic categories of any top-level ontology. They ac- count for fundamental assumptions of the modes of existence of those individuals that are said to be in space and time. The present paper is devoted to GFO-Space, the ontology of space in the General Formal Ontology (GFO). This ontology is in- troduced by a set of axioms formalized in first-order logic and further elucidated by consequences of the axiomatization. The theory is based on four primitives: the category of space regions, the rela- tions of being a spatial part and being a spatial boundary, as well as the relation of spatial coincidence. The presence of boundaries and the notion of coincidence witness an inspiration of the ontology by well-motivated ideas of Franz Brentano on space, time and the continuum. Taking up a line of prior investigations of his ap- proach, the present work contributes a further step in establishing a corresponding ontology of space, employing rigorous logical methods. Keywords. top-level ontology, theory of space, theory of boundaries 1. -
Foundations of Mathematics and Physics One Century After Hilbert: New Perspectives Edited by Joseph Kouneiher
FOUNDATIONS OF MATHEMATICS AND PHYSICS ONE CENTURY AFTER HILBERT: NEW PERSPECTIVES EDITED BY JOSEPH KOUNEIHER JOHN C. BAEZ The title of this book recalls Hilbert's attempts to provide foundations for mathe- matics and physics, and raises the question of how far we have come since then|and what we should do now. This is a good time to think about those questions. The foundations of mathematics are growing happily. Higher category the- ory and homotopy type theory are boldly expanding the scope of traditional set- theoretic foundations. The connection between logic and computation is growing ever deeper, and significant proofs are starting to be fully formalized using software. There is a lot of ferment, but there are clear payoffs in sight and a clear strategy to achieve them, so the mood is optimistic. This volume, however, focuses mainly on the foundations of physics. In recent decades fundamental physics has entered a winter of discontent. The great triumphs of the 20th century|general relativity and the Standard Model of particle physics| continue to fit almost all data from terrestrial experiments, except perhaps some anomalies here and there. On the other hand, nobody knows how to reconcile these theories, nor do we know if the Standard Model is mathematically consistent. Worse, these theories are insufficient to explain what we see in the heavens: for example, we need something new to account for the formation and structure of galaxies. But the problem is not that physics is unfinished: it has always been that way. The problem is that progress, extremely rapid during most of the 20th century, has greatly slowed since the 1970s. -
Opening up Bodyspace: Perspectives from Posthuman and Feminist Theory Xenia Kokoula
11 Opening up Bodyspace: Perspectives from Posthuman and Feminist Theory Xenia Kokoula Introduction bodily formations, entanglements and alliances The field of architecture has long been dominated by are we confronted with? As our powers of shaping the human body as the measure of things.1 Situated and transforming all spatial scales – from the scale in the single room, the home, the neighborhood, of the body to that of the planet – become clear the city and moving on to larger and larger scales, in what has been called the Anthropocene, these the human body takes centre stage in the design questions become all the more urgent even if they process. Αs several scholars have critically noted, far exceed the scope of this essay.5 this is the normalised and normative white male body, as exemplified in Le Corbusier’s Modulor or Confronted with emerging spatio-corporeal para- in Ernst Neufert’s still routinely used handbook.2 digms, architects can no longer solely rely on a It is a whole and closed body surrounded by and theoretical canon that has historically ‘been defi- enclosed in spatial spheres that are firmly placed in cient in the very tools of self-criticism’.6 They must a pre-existing Cartesian universe. therefore seek inspiration in related discourses in the humanities and social sciences. The main Recent theoretical discussions have questioned purpose of this essay is, thus, to suggest possible this implicit understanding of the body as a closed starting points, and speculatively explore a range and impenetrable unity, along with the wider rejec- of conceptual paradigms and their implications for tion of anthropocentricism, and the role and limits design. -
Curriculum Vitae
SEBASTIAN DE HARO Curriculum Vitae Assistant Professor in Philosophy of Science at the Institute for Logic, Language and Computation and the Institute of Physics of the University of Amsterdam 1. RESEARCH PROFILE Areas of specialisation: Philosophy of Science, History and Philosophy of Physics, Theoretical Physics Areas of competence: Epistemology, Metaphysics, Ethics, Philosophical and Social Aspects of Information, History of Science, History of Philosophy, Philosophy of Logic and Language, Philosophy of Mathematics 2. PREVIOUS POSITIONS • Lecturer (2009-2020), Amsterdam University College (AUC), University of Amsterdam. Tasks: teaching, curriculum development and evaluation, thesis supervision, member of the BSA committee. Between 2009-2015 I also had tutoring responsibilities. • Lecturer (2019-2020, fixed term), Department of Philosophy, Free University Amsterdam • Lecturer in theoretical physics (fixed term), Institute for Theoretical Physics, Faculty of Science, University of Amsterdam. Teaching, research, thesis supervision. 02/12 - 07/14. • Research associate. Managing editor of Foundations of Physics on behalf of Gerard ’t Hooft, Spinoza Institute/ITP, Utrecht University and Springer Verlag, 2008-2009. Research, managing editorial office, setting up new projects, contact Editorial Board. 3. PUBLICATIONS Total number of citations (all publications): 2,751. i10-index: 33. h-index: 22 Full list of publications and citation information via Google scholar profile: http://scholar.google.nl/citations?user=rmXDqN4AAAAJ&hl=nl&oi=ao Journal articles, book chapters, and book reviews General philosophy of science: journal articles (6) 1. ‘The Empirical Under-determination Argument Against Scientific Realism for Dual Theories’. Erkenntnis, 2021. https://link.springer.com/article/10.1007%2Fs10670-020-00342-0 2. ‘Science and Philosophy: A Love-Hate Relationship’. -
Foundations of Quantum Physics I. a Critique of the Tradition
Foundations of quantum physics I. A critique of the tradition Arnold Neumaier Fakult¨at f¨ur Mathematik, Universit¨at Wien Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria email: [email protected] http://www.mat.univie.ac.at/~neum April 24, 2019 Abstract. This paper gives a thorough critique of the foundations of quantum physics in its mainstream interpretation (i.e., treating pure states and probability as primitives, without reference to hidden variables, and without modifications of the quantum laws). This is achieved by cleanly separating a concise version of the (universally accepted) for- mal core of quantum physics from the (controversial) interpretation issues. The latter are primarily related to measurement, but also to questions of existence and of the meaning of basic concepts like ’state’ and ’particle’. The requirements for good foundations of quantum physics are discussed. Main results: • Born’s rule cannot be valid universally, and must be considered as a scientific law with a restricted domain of validity. • If the state of every composite quantum system contains all information that can be known about this system, it cannot be a pure state in general. For the discussion of questions related to this paper, please use the discussion forum https://www.physicsoverflow.org. 1 Contents 1 Introduction 3 2 Thetraditionalfoundationsofquantumphysics 4 2.1 Postulates for the formal core of quantum physics . ......... 5 2.2 Thepurestateidealization. .... 6 2.3 Schr¨odingerequationandBorn’srule . ....... 7 2.4 Interpretingtheformalcore . .... 9 3 A critique of Born’s rule 10 3.1 Early, measurement-free formulations of Born’s rule . ............ 11 3.2 Formulations of Born’s rule in terms of measurement . -
Arxiv:Gr-Qc/0601043V3 2 Dec 2006 Can Gravitons Be Detected?
Can Gravitons Be Detected? Tony Rothman ∗ and Stephen Boughn† ∗ Princeton University, Princeton, NJ 08544 † Haverford College, Haverford, PA 19041 LATEX-ed February 4, 2008 Abstract Freeman Dyson has questioned whether any conceivable experiment in the real universe can detect a single graviton. If not, is it meaningful to talk about gravitons as physical entities? We attempt to answer Dyson’s question and find it is possible concoct an idealized thought experiment capable of detecting one graviton; however, when anything remotely resembling realistic physics is taken into account, detection becomes impossible, indicating that Dyson’s conjecture is very likely true. We also point out several mistakes in the literature dealing with graviton detection and production. arXiv:gr-qc/0601043v3 2 Dec 2006 PACS: .03.65.Sq, .04.30.Db, .04.30.Nk, .04.80.Cc, .04.80.Nn, 95.30.Cq Keywords: Gravitons, Gravitational Waves, Gravitational Bremsstrahlung, Graviton- electron Cross Sections. 1 Introduction The search for gravitational waves, one of the central predictions of general relativity, has been ongoing for several decades. Strong indirect evidence for their existence comes from the timing of the orbital decay rate of the binary pulsar PSR1913+16, and with the completion of LIGO II and other gravity-wave observatories, researchers expect a direct detection. Gravitons themselves present a thornier issue. Although physicists routinely speak as if bosons mediating the gravitational force exist, the extraordinary weakness of the gravitational interaction makes the detection of one ∗[email protected] †[email protected] 1 Gravitons ... 2 gravitational quantum a remote proposition. Recently, Dyson[1] has suggested that detection of a single graviton may in fact be ruled out in the real universe. -
The Aethereal Universe
TThhee AAeetthheerreeaall UUnniivveerrssee Andrew Holster Sept. 2014 Minor revisions Sept. 2015 CCoonntteennttss INTRODUCTION TO THE AETHEREAL UNIVERSE. ............ 4 PART 1. THE PHYSICS OF TAU ................................................. 20 1. The Aethereal Universe, starting from particle physics. .................................. 21 1.1 Overview 1: TAU on the cosmic scale. ......................................................... 22 1.2 Overview 2. TAU on the microscopic scale. ................................................. 23 1.3 Overview 3. TAU on the inside. .................................................................... 24 2. STR from extra circular dimensions. ............................................................... 26 2.1 STR from simple maths. ................................................................................ 27 3. QM from extra circular dimensions. ................................................................ 30 3.1 QM from simple maths. ................................................................................. 31 4. The Torus ......................................................................................................... 32 5. Particle strings. ................................................................................................. 33 5.1 Quantum entanglement. ................................................................................. 34 5.2 Quantum Entanglement mechanisms. ............................................................ 35 5.3 Quantum entanglement -
Space, Time and Einstein
Space, Time and Einstein Space, Time and Einstein An Introduction J. B. Kennedy © J. B. Kennedy 2003 This book is copyright under the Berne Convention. No reproduction without permission. All rights reserved. First published in 2003 by Acumen Acumen Publishing Limited 15A Lewins Yard East Street Chesham HP5 1HQ www.acumenpublishing.co.uk ISBN: 1-902683-66-8 (hardcover) ISBN: 1-902683-67-6 (paperback) British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Designed and typeset by Kate Williams, Abergavenny. Printed and bound by Biddles Ltd., Guildford and King’s Lynn. For Carole and John Crascall Contents Preface and acknowledgements ix Part I: Einstein’s revolution 1 1 From Aristotle to Hiroshima 3 2 Einstein in a nutshell 7 3 The twin paradox 31 4 How to build an atomic bomb 40 5 The four-dimensional universe 50 6 Time travel is possible 66 7 Can the mind understand the world? 71 Part II: Philosophical progress 75 8 Who invented space? 77 9 Zeno’s paradoxes: is motion impossible? 92 10 Philosophers at war: Newton vs. Leibniz 104 11 The philosophy of left and right 126 12 The unreality of time 133 13 General relativity: is space curved? 139 14 The fall of geometry: is mathematics certain? 149 15 The resurrection of absolutes 159 16 The resilience of space 172 vii SPACE, TIME AND EINSTEIN Part III: Frontiers 175 17 Faster than light: was Einstein wrong? 177 18 The Big Bang: how did the universe begin? 185 19 Black holes: trapdoors to nowhere 188 20 Why haven’t aliens come visiting? 193 21 The inflationary and accelerating universe 197 22 Should we believe the physicists? 202 Appendix A: Spacetime diagrams 207 Appendix B: Symmetry and Lorentz’s minority interpretation 222 Appendix C: Simple formulas for special relativity 225 Appendix D: Websites 227 Appendix E: Guide to further reading 229 Index 239 viii Preface and acknowledgements The ongoing revolution in our understanding of space and time is so central to the drama of our times that no educated person can remain ignorant of it. -
On the Foundations of Superstring Theory
Found Phys DOI 10.1007/s10701-012-9682-4 On the Foundations of Superstring Theory Gerard ’t Hooft Received: 16 August 2012 / Accepted: 6 September 2012 © Springer Science+Business Media, LLC 2012 Abstract Superstring theory is an extension of conventional quantum field theory that allows for stringlike and branelike material objects besides pointlike particles. The basic foundations on which the theory is built are amazingly shaky, and, equally amazingly, it seems to be this lack of solid foundations to which the theory owes its strength. We emphasize that such a situation is legitimate only in the develop- ment phases of a new doctrine. Eventually, a more solidly founded structure must be sought. Although it is advertised as a “candidate theory of quantum gravity”, we claim that string theory may not be exactly that. Rather, just like quantum field theory itself, it is a general mathematical framework for a class of theories. Its major flaw could be that it still embraces a Copenhagen view on the relation between quantum mechanics and reality, while any “theory of everything”, that is, a theory for the entire cosmos, should do better than that. Keywords String theory · Black holes · Determinism · QCD · Local conformal symmetry · Hidden variables The question “what are superstring theory’s foundations?” is not just a philosophical one. Just because it is still not understood how to formulate concisely any chain of logical arguments that could reveal what its basic assumptions are, how the theory is constructed part-by-part, what its strengths and limitations are, how many string G. ’t Hooft () Institute for Theoretical Physics, Utrecht University, Utrecht, The Netherlands e-mail: [email protected] url: http://www.phys.uu.nl/~thooft/ G. -
The Oxford Questions on the Foundations of Quantum Physics 1 2 3 Rspa.Royalsocietypublishing.Org G
The Oxford Questions on the foundations of quantum physics 1 2 3 rspa.royalsocietypublishing.org G. A. D. Briggs ,J.N.Butterfield and A. Zeilinger 1Department of Materials, University of Oxford, Oxford OX1 3PH, UK 2Trinity College, University of Cambridge, Cambridge CB2 1TQ, UK 3 Perspective Faculty of Physics, University of Vienna, Vienna, Austria Cite this article: Briggs GAD, Butterfield JN, The twentieth century saw two fundamental Zeilinger A. 2013 The Oxford Questions on the revolutions in physics—relativity and quantum. Daily use of these theories can numb the sense of wonder foundations of quantum physics. Proc R Soc A at their immense empirical success. Does their 469: 20130299. instrumental effectiveness stand on the rock of secure http://dx.doi.org/10.1098/rspa.2013.0299 concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even Received: 8 May 2013 create, reality or merely change belief? Must relativity Accepted: 7 June 2013 and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a Subject Areas: conference on Quantum Physics and the Nature of quantum physics Reality. Some issues remain as controversial as ever, but some are being nudged by theory’s secret weapon Keywords: of experiment. foundations, relativity, reality, Polkinghorne, measurement, collapse 1. The achievements of twentieth century physics Author for correspondence: Much of the history of twentieth century physics is the G. A. D. Briggs story of the consolidation of the relativity and quantum e-mail: [email protected] revolutions, with their basic postulates being applied ever more widely. -
String Theory
Found Phys (2013) 43:174–181 DOI 10.1007/s10701-011-9620-x String Theory Leonard Susskind Received: 11 January 2011 / Accepted: 29 November 2011 / Published online: 28 December 2011 © Springer Science+Business Media, LLC 2011 Abstract After reviewing the original motivation for the formulation of string theory and what we learned from it, I discuss some of the implications of the holographic principle and of string dualities for the question of the building blocks of nature. 1 String Theory and Hadrons There is no doubt that hadrons are quarks and anti-quarks bound together by strings. That was not known until Nambu and I, and very shortly after, H.B. Nielsen, realized that the phenomenological Veneziano amplitude described the scattering of objects, that at the time, I called rubber bands [1–3]. Mesons were the simplest hadrons: they were envisioned to be quark anti-quark pairs bound together by elastic strings. Today we would call them open strings. Open strings interacted when the quark at one end of a string annihilated with the antiquark at the end of another string. In fact it was very quickly realized that the quark and antiquark at the ends of a single string could annihilate and leave a closed string, in those days called a Pomeron; today a glueball. Baryons were more complicated: three strings tied together at a junction, with quarks at the ends. From the very beginning sometime in late 1968 or early 69, until today, string theory has been the inspiration for every successful description of hadrons that deals with their large scale properties.